Trujillo J, Fung R, Shankar M, Schwander P, Hosseinizadeh A
Struct Dyn. 2025; 12(1):014101.
PMID: 39868355
PMC: 11758283.
DOI: 10.1063/4.0000280.
Wang J, Tang J, Chen F
ACS Omega. 2024; 9(43):43894-43907.
PMID: 39493979
PMC: 11525525.
DOI: 10.1021/acsomega.4c07094.
da Hora G, Oh M, Mifflin M, Digal L, Roberts A, Swanson J
J Am Chem Soc. 2024; 146(7):4444-4454.
PMID: 38166378
PMC: 11282585.
DOI: 10.1021/jacs.3c10126.
Dasetty S, Bidone T, Ferguson A
Biophys J. 2023; 123(17):2716-2729.
PMID: 38098231
PMC: 11393677.
DOI: 10.1016/j.bpj.2023.12.009.
Qiu Y, OConnor M, Xue M, Liu B, Huang X
J Chem Theory Comput. 2023; 19(14):4728-4742.
PMID: 37382437
PMC: 11042546.
DOI: 10.1021/acs.jctc.3c00318.
Inferring Pathways of Oxidative Folding from Prefolding Free Energy Landscapes of Disulfide-Rich Toxins.
Mansbach R, Patel L, Watson N, Kubicek-Sutherland J, Gnanakaran S
J Phys Chem B. 2023; 127(8):1689-1703.
PMID: 36791259
PMC: 9987446.
DOI: 10.1021/acs.jpcb.2c07124.
Collective variable discovery in the age of machine learning: reality, hype and everything in between.
Bhakat S
RSC Adv. 2022; 12(38):25010-25024.
PMID: 36199882
PMC: 9437778.
DOI: 10.1039/d2ra03660f.
Selecting XFEL single-particle snapshots by geometric machine learning.
Cruz-Chu E, Hosseinizadeh A, Mashayekhi G, Fung R, Ourmazd A, Schwander P
Struct Dyn. 2021; 8(1):014701.
PMID: 33644252
PMC: 7902084.
DOI: 10.1063/4.0000060.
Characterizing chromatin folding coordinate and landscape with deep learning.
Xie W, Qi Y, Zhang B
PLoS Comput Biol. 2020; 16(9):e1008262.
PMID: 32986691
PMC: 7544120.
DOI: 10.1371/journal.pcbi.1008262.
Data-Driven Molecular Dynamics: A Multifaceted Challenge.
Bernetti M, Bertazzo M, Masetti M
Pharmaceuticals (Basel). 2020; 13(9).
PMID: 32961909
PMC: 7557855.
DOI: 10.3390/ph13090253.
Time-Lagged t-Distributed Stochastic Neighbor Embedding (t-SNE) of Molecular Simulation Trajectories.
Spiwok V, Kriz P
Front Mol Biosci. 2020; 7:132.
PMID: 32714941
PMC: 7344294.
DOI: 10.3389/fmolb.2020.00132.
Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics: Application to Materials and Biological Systems.
Gkeka P, Stoltz G, Barati Farimani A, Belkacemi Z, Ceriotti M, Chodera J
J Chem Theory Comput. 2020; 16(8):4757-4775.
PMID: 32559068
PMC: 8312194.
DOI: 10.1021/acs.jctc.0c00355.
Lattice Light-Sheet Microscopy Multi-dimensional Analyses (LaMDA) of T-Cell Receptor Dynamics Predict T-Cell Signaling States.
Rosenberg J, Cao G, Borja-Prieto F, Huang J
Cell Syst. 2020; 10(5):433-444.e5.
PMID: 32437685
PMC: 7250142.
DOI: 10.1016/j.cels.2020.04.006.
Approximating dynamic proximity with a hybrid geometry energy-based kernel for diffusion maps.
Tan Q, Duan M, Li M, Han L, Huo S
J Chem Phys. 2019; 151(10):105101.
PMID: 31521094
PMC: 6733700.
DOI: 10.1063/1.5100968.
Galerkin approximation of dynamical quantities using trajectory data.
Thiede E, Giannakis D, Dinner A, Weare J
J Chem Phys. 2019; 150(24):244111.
PMID: 31255053
PMC: 6824902.
DOI: 10.1063/1.5063730.
Machine learning for the structure-energy-property landscapes of molecular crystals.
Musil F, De S, Yang J, Campbell J, Day G, Ceriotti M
Chem Sci. 2018; 9(5):1289-1300.
PMID: 29675175
PMC: 5887104.
DOI: 10.1039/c7sc04665k.
Rich Dynamics Underlying Solution Reactions Revealed by Sampling and Data Mining of Reactive Trajectories.
Zhang J, Zhang Z, Yang Y, Liu S, Yang L, Gao Y
ACS Cent Sci. 2017; 3(5):407-414.
PMID: 28573202
PMC: 5445542.
DOI: 10.1021/acscentsci.7b00037.
Mapping and classifying molecules from a high-throughput structural database.
De S, Musil F, Ingram T, Baldauf C, Ceriotti M
J Cheminform. 2017; 9:6.
PMID: 28203290
PMC: 5289135.
DOI: 10.1186/s13321-017-0192-4.
Inherent structure versus geometric metric for state space discretization.
Liu H, Li M, Fan J, Huo S
J Comput Chem. 2016; 37(14):1251-8.
PMID: 26915811
PMC: 4841724.
DOI: 10.1002/jcc.24315.
A Transport Model for Estimating the Time Course of ERK Activation in the C. elegans Germline.
Mattingly H, Chen J, Arur S, Shvartsman S
Biophys J. 2015; 109(11):2436-45.
PMID: 26636953
PMC: 4675862.
DOI: 10.1016/j.bpj.2015.10.021.