» Articles » PMID: 20609351

4E-BP1 is a Key Effector of the Oncogenic Activation of the AKT and ERK Signaling Pathways That Integrates Their Function in Tumors

Overview
Journal Cancer Cell
Publisher Cell Press
Specialty Oncology
Date 2010 Jul 9
PMID 20609351
Citations 228
Authors
Affiliations
Soon will be listed here.
Abstract

PIK3CA and PTEN alterations are common in human cancer, but only a fraction of such tumors are dependent upon AKT signaling. AKT independence is associated with redundant activation of cap-dependent translation mediated by convergent regulation of the translational repressor 4E-BP1 by the AKT and ERK pathways. This provides mechanistic bases for the limited activity of AKT and MEK inhibitors in tumors with comutation of both pathways and the profound synergy observed with combined inhibition. Whereas such tumors are sensitive to a dominant active 4E-BP1 mutant, knockdown of 4E-BP1 expression reduces their dependence on AKT/ERK signaling for translation or survival. Thus, 4E-BP1 plays a prominent role in mediating the effects of these pathways in tumors in which they are activated by mutation.

Citing Articles

Paired primary-metastasis patient-derived organoids and mouse models identify phenotypic evolution and druggable dependencies of peritoneal metastasis from appendiceal cancer.

Mahmoud A, Choi P, Sukhwa C, Pintar J, Walch H, Zhao N bioRxiv. 2025; .

PMID: 40027618 PMC: 11870485. DOI: 10.1101/2025.02.17.638725.


Noncanonical feedback loop between "RIP3-MLKL" and "4EBP1-eIF4E" promotes neuronal necroptosis.

Wang S, Zhang Y, Wang M, Zhai Z, Tan Y, Xu W MedComm (2020). 2025; 6(3):e70107.

PMID: 39974664 PMC: 11836343. DOI: 10.1002/mco2.70107.


Small-molecule modulators of B56-PP2A restore 4E-BP function to suppress eIF4E-dependent translation in cancer cells.

Lum M, Jonas K, Parmar S, Black A, OConnor C, Dobersch S J Clin Invest. 2025; 135(4).

PMID: 39869680 PMC: 11827888. DOI: 10.1172/JCI176093.


Global transcriptomic network analysis of the crosstalk between microbiota and cancer-related cells in the oral-gut-lung axis.

Otalora-Otalora B, Payan-Gomez C, Lopez-Rivera J, Pedroza-Aconcha N, Aristizabal-Guzman C, Isaza-Ruget M Front Cell Infect Microbiol. 2024; 14:1425388.

PMID: 39228892 PMC: 11368877. DOI: 10.3389/fcimb.2024.1425388.


Combined inhibition of KRAS and mTORC1 kinase is synergistic in non-small cell lung cancer.

Kitai H, Choi P, Yang Y, Boyer J, Whaley A, Pancholi P Nat Commun. 2024; 15(1):6076.

PMID: 39025835 PMC: 11258147. DOI: 10.1038/s41467-024-50063-z.


References
1.
Bilodeau M, Balitza A, Hoffman J, Manley P, Barnett S, Defeo-Jones D . Allosteric inhibitors of Akt1 and Akt2: a naphthyridinone with efficacy in an A2780 tumor xenograft model. Bioorg Med Chem Lett. 2008; 18(11):3178-82. DOI: 10.1016/j.bmcl.2008.04.074. View

2.
Tsao H, Goel V, Wu H, Yang G, Haluska F . Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol. 2004; 122(2):337-41. PMC: 2586668. DOI: 10.1046/j.0022-202X.2004.22243.x. View

3.
McCubrey J, Steelman L, Chappell W, Abrams S, Wong E, Chang F . Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2006; 1773(8):1263-84. PMC: 2696318. DOI: 10.1016/j.bbamcr.2006.10.001. View

4.
Feldman M, Apsel B, Uotila A, Loewith R, Knight Z, Ruggero D . Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009; 7(2):e38. PMC: 2637922. DOI: 10.1371/journal.pbio.1000038. View

5.
Wee S, Jagani Z, Xiang K, Loo A, Dorsch M, Yao Y . PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 2009; 69(10):4286-93. DOI: 10.1158/0008-5472.CAN-08-4765. View