» Articles » PMID: 20590526

Distribution and Paralogue Specificity of Mammalian DeSUMOylating Enzymes

Overview
Journal Biochem J
Specialty Biochemistry
Date 2010 Jul 2
PMID 20590526
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

The covalent attachment of SUMO (small ubiquitin-like protein modifier) to target proteins results in modifications in their activity, binding interactions, localization or half-life. The reversal of this modification is catalysed by SENPs (SUMO-specific processing proteases). Mammals contain four SUMO paralogues and six SENP enzymes. In the present paper, we describe a systematic analysis of human SENPs, integrating estimates of relative selectivity for SUMO1 and SUMO2, and kinetic measurements of recombinant C-terminal cSENPs (SENP catalytic domains). We first characterized the reaction of each endogenous SENP and cSENPs with HA-SUMO-VS [HA (haemagglutinin)-tagged SUMO-vinyl sulfones], active-site-directed irreversible inhibitors of SENPs. We found that all cSENPs and endogenous SENP1 react with both SUMO paralogues, whereas all other endogenous SENPs in mammalian cells and tissues display high selectivity for SUMO2-VS. To obtain more quantitative data, the kinetic properties of purified cSENPs were determined using SUMO1- or SUMO2-AMC (7-amino-4-methylcoumarin) as substrate. All enzymes bind their respective substrates with high affinity. cSENP1 and cSENP2 process either SUMO substrate with similar affinity and catalytic efficiency; cSENP5 and cSENP6 show marked catalytic specificity for SUMO2 as measured by Km and kcat, whereas cSENP7 works only on SUMO2. Compared with cSENPs, recombinant full-length SENP1 and SENP2 show differences in SUMO selectivity, indicating that paralogue specificity is influenced by the presence of the variable N-terminal domain of each SENP. Our data suggest that SUMO2 metabolism is more dynamic than that of SUMO1 since most SENPs display a marked preference for SUMO2.

Citing Articles

Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells.

Huang C, Yang T, Lin K J Biomed Sci. 2024; 31(1):16.

PMID: 38280996 PMC: 10821541. DOI: 10.1186/s12929-024-01003-y.


Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates?.

Cheng X, Yang W, Lin W, Mei F Pharmacol Rev. 2023; 75(5):979-1006.

PMID: 37137717 PMC: 10441629. DOI: 10.1124/pharmrev.122.000784.


SUMOylation and Viral Infections of the Brain.

Imbert F, Leavitt G, Langford D Pathogens. 2022; 11(7).

PMID: 35890062 PMC: 9324588. DOI: 10.3390/pathogens11070818.


Host SUMOylation Pathway Negatively Regulates Protective Immune Responses and Promotes Survival.

Singhal J, Madan E, Chaurasiya A, Srivastava P, Singh N, Kaushik S Front Cell Infect Microbiol. 2022; 12:878136.

PMID: 35734580 PMC: 9207379. DOI: 10.3389/fcimb.2022.878136.


Hypoxia-induced NFATc3 deSUMOylation enhances pancreatic carcinoma progression.

Tong Y, Zhang Z, Cheng Y, Yang J, Fan C, Zhang X Cell Death Dis. 2022; 13(4):413.

PMID: 35484132 PMC: 9050899. DOI: 10.1038/s41419-022-04779-9.


References
1.
Nishida T, Kaneko F, Kitagawa M, Yasuda H . Characterization of a novel mammalian SUMO-1/Smt3-specific isopeptidase, a homologue of rat axam, which is an axin-binding protein promoting beta-catenin degradation. J Biol Chem. 2001; 276(42):39060-6. DOI: 10.1074/jbc.M103955200. View

2.
Gong L, Yeh E . Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem. 2006; 281(23):15869-77. DOI: 10.1074/jbc.M511658200. View

3.
Drag M, Salvesen G . DeSUMOylating enzymes--SENPs. IUBMB Life. 2008; 60(11):734-42. DOI: 10.1002/iub.113. View

4.
Matic I, van Hagen M, Schimmel J, Macek B, Ogg S, Tatham M . In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics. 2007; 7(1):132-44. PMC: 3840926. DOI: 10.1074/mcp.M700173-MCP200. View

5.
Cleland W . The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963; 67:104-37. DOI: 10.1016/0006-3002(63)91800-6. View