» Articles » PMID: 20579626

Identification of a Frameshift Mutation in Osterix in a Patient with Recessive Osteogenesis Imperfecta

Overview
Journal Am J Hum Genet
Publisher Cell Press
Specialty Genetics
Date 2010 Jun 29
PMID 20579626
Citations 123
Authors
Affiliations
Soon will be listed here.
Abstract

Osteogenesis imperfecta, or "brittle bone disease," is a type I collagen-related condition associated with osteoporosis and increased risk of bone fractures. Using a combination of homozygosity mapping and candidate gene approach, we have identified a homozygous single base pair deletion (c.1052delA) in SP7/Osterix (OSX) in an Egyptian child with recessive osteogenesis imperfecta. The clinical findings from this patient include recurrent fractures, mild bone deformities, delayed tooth eruption, normal hearing, and white sclera. OSX encodes a transcription factor containing three Cys2-His2 zinc-finger DNA-binding domains at its C terminus, which, in mice, has been shown to be essential for bone formation. The frameshift caused by the c.1052delA deletion removes the last 81 amino acids of the protein, including the third zinc-finger motif. This finding adds another locus to the spectrum of genes associated with osteogenesis imperfecta and reveals that SP7/OSX also plays a key role in human bone development.

Citing Articles

Osterix mRNA Enrichment in Small Extracellular Vesicles Derived From Osteogenically Induced ADSCs: A Promoter of Osteogenic Differentiation in BMSCs.

Liang Z, Wu Y, Bao J, Xiao Q, Luo S, Liu X J Cell Mol Med. 2025; 29(1):e70353.

PMID: 39804160 PMC: 11727376. DOI: 10.1111/jcmm.70353.


Regulation of Skeletal Development and Maintenance by Runx2 and Sp7.

Komori T Int J Mol Sci. 2024; 25(18).

PMID: 39337587 PMC: 11432631. DOI: 10.3390/ijms251810102.


Zebrafish Models for Skeletal and Extraskeletal Osteogenesis Imperfecta Features: Unveiling Pathophysiology and Paving the Way for Drug Discovery.

Masiero C, Aresi C, Forlino A, Tonelli F Calcif Tissue Int. 2024; 115(6):931-959.

PMID: 39320469 PMC: 11607041. DOI: 10.1007/s00223-024-01282-5.


Update on the Genetics of Osteogenesis Imperfecta.

Jovanovic M, Marini J Calcif Tissue Int. 2024; 115(6):891-914.

PMID: 39127989 PMC: 11607015. DOI: 10.1007/s00223-024-01266-5.


Exome Sequencing for the Diagnostics of Osteogenesis Imperfecta in Six Russian Patients.

Koshevaya Y, Turkunova M, Vechkasova A, Serebryakova E, Donnikov M, Papanov S Curr Issues Mol Biol. 2024; 46(5):4106-4118.

PMID: 38785520 PMC: 11119099. DOI: 10.3390/cimb46050252.


References
1.
Nagy E, Maquat L . A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci. 1998; 23(6):198-9. DOI: 10.1016/s0968-0004(98)01208-0. View

2.
Sillence D, Senn A, Danks D . Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979; 16(2):101-16. PMC: 1012733. DOI: 10.1136/jmg.16.2.101. View

3.
Styrkarsdottir U, Halldorsson B, Gretarsdottir S, Gudbjartsson D, Walters G, Ingvarsson T . New sequence variants associated with bone mineral density. Nat Genet. 2008; 41(1):15-7. DOI: 10.1038/ng.284. View

4.
Milona M, Gough J, Edgar A . Expression of alternatively spliced isoforms of human Sp7 in osteoblast-like cells. BMC Genomics. 2003; 4:43. PMC: 280673. DOI: 10.1186/1471-2164-4-43. View

5.
Nardelli J, Gibson T, Vesque C, Charnay P . Base sequence discrimination by zinc-finger DNA-binding domains. Nature. 1991; 349(6305):175-8. DOI: 10.1038/349175a0. View