» Articles » PMID: 20564729

Semiparametric Regression Models for Repeated Measures of Mortal Cohorts with Non-monotone Missing Outcomes and Time-dependent Covariates

Overview
Journal Stat Med
Publisher Wiley
Specialty Public Health
Date 2010 Jun 22
PMID 20564729
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

We propose a semiparametric marginal modeling approach for longitudinal analysis of cohorts with data missing due to death and non-response to estimate regression parameters interpreted as conditioned on being alive. Our proposed method accommodates outcomes and time-dependent covariates that are missing not at random with non-monotone missingness patterns via inverse-probability weighting. Missing covariates are replaced by consistent estimates derived from a simultaneously solved inverse-probability-weighted estimating equation. Thus, we utilize data points with the observed outcomes and missing covariates beyond the estimated weights while avoiding numerical methods to integrate over missing covariates. The approach is applied to a cohort of elderly female hip fracture patients to estimate the prevalence of walking disability over time as a function of body composition, inflammation, and age.

Citing Articles

The impact of financial incentives on mental health among adults in HIV care in Lake Zone, Tanzania.

Chitle P, Sheira L, Katabaro E, Winters S, Njau P, Sabasaba A AIDS. 2024; 38(11):1677-1685.

PMID: 38819837 PMC: 11293976. DOI: 10.1097/QAD.0000000000003948.


Sex Differences in Recovery Across Multiple Domains Among Older Adults With Hip Fracture.

Orwig D, Abraham D, Hochberg M, Gruber-Baldini A, Guralnik J, Cappola A J Gerontol A Biol Sci Med Sci. 2021; 77(7):1463-1471.

PMID: 34555162 PMC: 9255694. DOI: 10.1093/gerona/glab271.


Pain severity as a mediator of the association between depressive symptoms and physical performance in knee osteoarthritis.

Rathbun A, Shardell M, Stuart E, Yau M, Gallo J, Schuler M Osteoarthritis Cartilage. 2018; 26(11):1453-1460.

PMID: 30092262 PMC: 6397771. DOI: 10.1016/j.joca.2018.07.016.


Semi-parametric methods of handling missing data in mortal cohorts under non-ignorable missingness.

Wen L, Seaman S Biometrics. 2018; 74(4):1427-1437.

PMID: 29772074 PMC: 6481558. DOI: 10.1111/biom.12891.


Accommodating informative dropout and death: a joint modelling approach for longitudinal and semi-competing risks data.

Li Q, Su L J R Stat Soc Ser C Appl Stat. 2017; 67(1):145-163.

PMID: 29277843 PMC: 5741179. DOI: 10.1111/rssc.12210.


References
1.
Dolan M, Hawkes W, Zimmerman S, Morrison R, Gruber-Baldini A, Hebel J . Delirium on hospital admission in aged hip fracture patients: prediction of mortality and 2-year functional outcomes. J Gerontol A Biol Sci Med Sci. 2000; 55(9):M527-34. DOI: 10.1093/gerona/55.9.m527. View

2.
Egleston B, Scharfstein D, MacKenzie E . On estimation of the survivor average causal effect in observational studies when important confounders are missing due to death. Biometrics. 2008; 65(2):497-504. PMC: 2700847. DOI: 10.1111/j.1541-0420.2008.01111.x. View

3.
Parzen M, Lipsitz S, Ibrahim J, Lipshultz S . A weighted estimating equation for linear regression with missing covariate data. Stat Med. 2002; 21(16):2421-36. DOI: 10.1002/sim.1195. View

4.
Rotnitzky A, Scharfstein D, Su T, Robins J . Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring. Biometrics. 2001; 57(1):103-13. DOI: 10.1111/j.0006-341x.2001.00103.x. View

5.
Ibrahim J, Chen M, Lipsitz S . Monte Carlo EM for missing covariates in parametric regression models. Biometrics. 2001; 55(2):591-6. DOI: 10.1111/j.0006-341x.1999.00591.x. View