» Articles » PMID: 17579923

Weighted Estimating Equations for Longitudinal Studies with Death and Non-monotone Missing Time-dependent Covariates and Outcomes

Overview
Journal Stat Med
Publisher Wiley
Specialty Public Health
Date 2007 Jun 21
PMID 17579923
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

We propose a marginal modeling approach to estimate the association between a time-dependent covariate and an outcome in longitudinal studies where some study participants die during follow-up and both variables have non-monotone response patterns. The proposed method is an extension of weighted estimating equations that allows the outcome and covariate to have different missing-data patterns. We present methods for both random and non-random missing-data mechanisms. A study of functional recovery in a cohort of elderly female hip-fracture patients motivates the approach.

Citing Articles

Handling missing values in patient-reported outcome data in the presence of intercurrent events.

Thomassen D, Roychoudhury S, Amdal C, Reynders D, Musoro J, Sauerbrei W BMC Med Res Methodol. 2025; 25(1):56.

PMID: 40025441 PMC: 11872335. DOI: 10.1186/s12874-025-02510-8.


The Hidden Toll of Incarceration: Exploring the Link Between Incarceration Histories and Pain Among Older Adults in the United States.

Yang Y, Lutz G, Zhang Y, Chen C, Kheirbek R Innov Aging. 2023; 7(10):igad116.

PMID: 38094938 PMC: 10714910. DOI: 10.1093/geroni/igad116.


Waste Not, Want Not: Proper Design, Analysis, and Interpretation Are Essential to Advancing Aging Research Across the Translational Science Spectrum.

Shardell M, Speiser J J Gerontol A Biol Sci Med Sci. 2022; 77(11):2165-2167.

PMID: 35588371 PMC: 9678189. DOI: 10.1093/gerona/glac036.


Depressive symptom heterogeneity among older adults after hip fracture.

Kirk J, Magaziner J, Shardell M, Ryan A, Gruber-Baldini A, Orwig D Age Ageing. 2021; 50(6):1943-1951.

PMID: 34405224 PMC: 8768453. DOI: 10.1093/ageing/afab168.


Bayesian semi-parametric G-computation for causal inference in a cohort study with MNAR dropout and death.

Josefsson M, Daniels M J R Stat Soc Ser C Appl Stat. 2021; 70(2):398-414.

PMID: 33692597 PMC: 7939177. DOI: 10.1111/rssc.12464.


References
1.
Pauler D, McCoy S, Moinpour C . Pattern mixture models for longitudinal quality of life studies in advanced stage disease. Stat Med. 2003; 22(5):795-809. DOI: 10.1002/sim.1397. View

2.
Parzen M, Lipsitz S, Ibrahim J, Lipshultz S . A weighted estimating equation for linear regression with missing covariate data. Stat Med. 2002; 21(16):2421-36. DOI: 10.1002/sim.1195. View

3.
Dufouil C, Brayne C, Clayton D . Analysis of longitudinal studies with death and drop-out: a case study. Stat Med. 2004; 23(14):2215-26. DOI: 10.1002/sim.1821. View

4.
Minini P, Chavance M . Sensitivity analysis of longitudinal binary data with non-monotone missing values. Biostatistics. 2004; 5(4):531-44. DOI: 10.1093/biostatistics/kxh006. View

5.
White J . A two stage design for the study of the relationship between a rare exposure and a rare disease. Am J Epidemiol. 1982; 115(1):119-28. DOI: 10.1093/oxfordjournals.aje.a113266. View