» Articles » PMID: 20538610

A Non-sulfated Chondroitin Stabilizes Membrane Tubulation in Cnidarian Organelles

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2010 Jun 12
PMID 20538610
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Membrane tubulation is generally associated with rearrangements of the cytoskeleton and other cytoplasmic factors. Little is known about the contribution of extracellular matrix components to this process. Here, we demonstrate an essential role of proteoglycans in the tubulation of the cnidarian nematocyst vesicle. The morphogenesis of this extrusive organelle takes place inside a giant post-Golgi vesicle, which topologically represents extracellular space. This process includes the formation of a complex collagenous capsule structure that elongates into a long tubule, which invaginates after its completion. We show that a non-sulfated chondroitin appears as a scaffold in early morphogenesis of all nematocyst types in Hydra and Nematostella. It accompanies the tubulation of the vesicle membrane forming a provisional tubule structure, which after invagination matures by collagen incorporation. Inhibition of chondroitin synthesis by beta-xylosides arrests nematocyst morphogenesis at different stages of tubule outgrowth resulting in retention of tubule material and a depletion of mature capsules in the tentacles of hydra. Our data suggest a conserved role of proteoglycans in the stabilization of a membrane protrusion as an essential step in organelle morphogenesis.

Citing Articles

An ancient pan-cnidarian microRNA regulates stinging capsule biogenesis in Nematostella vectensis.

Fridrich A, Salinas-Saaverda M, Kozlolvski I, Surm J, Chrysostomou E, Tripathi A Cell Rep. 2023; 42(9):113072.

PMID: 37676763 PMC: 10548089. DOI: 10.1016/j.celrep.2023.113072.


Non-muscle myosin II drives critical steps of nematocyst morphogenesis.

Garg N, Stibler U, Eismann B, Mercker M, Bergheim B, Linn A iScience. 2023; 26(3):106291.

PMID: 36936784 PMC: 10014300. DOI: 10.1016/j.isci.2023.106291.


The Involvement of Cell-Type-Specific Glycans in Temporary Adhesion Revealed by a Lectin Screen.

Seabra S, Zenleser T, Grosbusch A, Hobmayer B, Lengerer B Biomimetics (Basel). 2022; 7(4).

PMID: 36278723 PMC: 9589958. DOI: 10.3390/biomimetics7040166.


A novel cytoskeletal action of xylosides.

Mencio C, Tilve S, Suzuki M, Higashi K, Katagiri Y, Geller H PLoS One. 2022; 17(6):e0269972.

PMID: 35763520 PMC: 9239447. DOI: 10.1371/journal.pone.0269972.


The architecture and operating mechanism of a cnidarian stinging organelle.

Karabulut A, McClain M, Rubinstein B, Sabin K, McKinney S, Gibson M Nat Commun. 2022; 13(1):3494.

PMID: 35715400 PMC: 9205923. DOI: 10.1038/s41467-022-31090-0.


References
1.
SLAUTTERBACK D, Fawcett D . The development of the cnidoblasts of Hydra; an electron microscope study of cell differentiation. J Biophys Biochem Cytol. 1959; 5(3):441-52. PMC: 2224671. DOI: 10.1083/jcb.5.3.441. View

2.
Yamada S, Okada Y, Ueno M, Iwata S, Deepa S, Nishimura S . Determination of the glycosaminoglycan-protein linkage region oligosaccharide structures of proteoglycans from Drosophila melanogaster and Caenorhabditis elegans. J Biol Chem. 2002; 277(35):31877-86. DOI: 10.1074/jbc.M205078200. View

3.
David C, Ozbek S, Adamczyk P, Meier S, Pauly B, Chapman J . Evolution of complex structures: minicollagens shape the cnidarian nematocyst. Trends Genet. 2008; 24(9):431-8. DOI: 10.1016/j.tig.2008.07.001. View

4.
Watanabe H, Fujisawa T, Holstein T . Cnidarians and the evolutionary origin of the nervous system. Dev Growth Differ. 2009; 51(3):167-83. DOI: 10.1111/j.1440-169X.2009.01103.x. View

5.
Holstein T . The morphogenesis of nematocytes in Hydra and Forskålia: an ultrastructural study. J Ultrastruct Res. 1981; 75(3):276-90. DOI: 10.1016/s0022-5320(81)80085-8. View