» Articles » PMID: 20525782

SMOG@ctbp: Simplified Deployment of Structure-based Models in GROMACS

Overview
Specialty Biochemistry
Date 2010 Jun 8
PMID 20525782
Citations 139
Authors
Affiliations
Soon will be listed here.
Abstract

Molecular dynamics simulations with coarse-grained and/or simplified Hamiltonians are an effective means of capturing the functionally important long-time and large-length scale motions of proteins and RNAs. Structure-based Hamiltonians, simplified models developed from the energy landscape theory of protein folding, have become a standard tool for investigating biomolecular dynamics. SMOG@ctbp is an effort to simplify the use of structure-based models. The purpose of the web server is two fold. First, the web tool simplifies the process of implementing a well-characterized structure-based model on a state-of-the-art, open source, molecular dynamics package, GROMACS. Second, the tutorial-like format helps speed the learning curve of those unfamiliar with molecular dynamics. A web tool user is able to upload any multi-chain biomolecular system consisting of standard RNA, DNA and amino acids in PDB format and receive as output all files necessary to implement the model in GROMACS. Both C(alpha) and all-atom versions of the model are available. SMOG@ctbp resides at http://smog.ucsd.edu.

Citing Articles

The strongest protein binder is surprisingly labile.

Fernandez-Calvo A, Reifs A, Saa L, Cortajarena A, De Sancho D, Perez-Jimenez R Protein Sci. 2024; 33(7):e5030.

PMID: 38864696 PMC: 11168069. DOI: 10.1002/pro.5030.


Accurate Characterization of Binding Kinetics and Allosteric Mechanisms for the HSP90 Chaperone Inhibitors Using AI-Augmented Integrative Biophysical Studies.

Xu C, Zhang X, Zhao L, Verkhivker G, Bai F JACS Au. 2024; 4(4):1632-1645.

PMID: 38665669 PMC: 11040708. DOI: 10.1021/jacsau.4c00123.


Exploring the structural acrobatics of fold-switching proteins using simplified structure-based models.

Retamal-Farfan I, Gonzalez-Higueras J, Galaz-Davison P, Rivera M, Ramirez-Sarmiento C Biophys Rev. 2023; 15(4):787-799.

PMID: 37681096 PMC: 10480104. DOI: 10.1007/s12551-023-01087-0.


Effects of Mass Change on Liquid-Liquid Phase Separation of the RNA-Binding Protein Fused in Sarcoma.

Dong W, Tang C, Chu W, Wang E, Wang J Biomolecules. 2023; 13(4).

PMID: 37189373 PMC: 10135815. DOI: 10.3390/biom13040625.


Negatively charged, intrinsically disordered regions can accelerate target search by DNA-binding proteins.

Wang X, Bigman L, Greenblatt H, Yu B, Levy Y, Iwahara J Nucleic Acids Res. 2023; 51(10):4701-4712.

PMID: 36774964 PMC: 10250230. DOI: 10.1093/nar/gkad045.


References
1.
Hess B, Kutzner C, van der Spoel D, Lindahl E . GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput. 2015; 4(3):435-47. DOI: 10.1021/ct700301q. View

2.
Whitford P, Schug A, Saunders J, Hennelly S, Onuchic J, Sanbonmatsu K . Nonlocal helix formation is key to understanding S-adenosylmethionine-1 riboswitch function. Biophys J. 2009; 96(2):L7-9. PMC: 2716452. DOI: 10.1016/j.bpj.2008.10.033. View

3.
Onuchic J, Wolynes P . Theory of protein folding. Curr Opin Struct Biol. 2004; 14(1):70-5. DOI: 10.1016/j.sbi.2004.01.009. View

4.
Schug A, Weigt M, Onuchic J, Hwa T, Szurmant H . High-resolution protein complexes from integrating genomic information with molecular simulation. Proc Natl Acad Sci U S A. 2009; 106(52):22124-9. PMC: 2799721. DOI: 10.1073/pnas.0912100106. View

5.
Pincus D, Cho S, Hyeon C, Thirumalai D . Minimal models for proteins and RNA from folding to function. Prog Mol Biol Transl Sci. 2009; 84:203-50. DOI: 10.1016/S0079-6603(08)00406-6. View