» Articles » PMID: 20511539

The Galactocerebrosidase Enzyme Contributes to the Maintenance of a Functional Hematopoietic Stem Cell Niche

Overview
Journal Blood
Publisher Elsevier
Specialty Hematology
Date 2010 Jun 1
PMID 20511539
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The balance between survival and death in many cell types is regulated by small changes in the intracellular content of bioactive sphingolipids. Enzymes that either produce or degrade these sphingolipids control this equilibrium. The findings here described indicate that the lysosomal galactocerebrosidase (GALC) enzyme, defective in globoid cell leukodystrophy, is involved in the maintenance of a functional hematopoietic stem/progenitor cell (HSPC) niche by contributing to the control of the intracellular content of key sphingolipids. Indeed, we show that both insufficient and supraphysiologic GALC activity-by inherited genetic deficiency or forced gene expression in patients' cells and in the disease model-induce alterations of the intracellular content of the bioactive GALC downstream products ceramide and sphingosine, and thus affect HSPC survival and function and the functionality of the stem cell niche. Therefore, GALC and, possibly, other enzymes for the maintenance of niche functionality and health tightly control the concentration of these sphingolipids within HSPCs.

Citing Articles

Haploinsufficiency at the CX3CR1 locus of hematopoietic stem cells favors the appearance of microglia-like cells in the central nervous system of transplant recipients.

Montepeloso A, Mattioli D, Pellin D, Peviani M, Genovese P, Biffi A Nat Commun. 2024; 15(1):10192.

PMID: 39587072 PMC: 11589136. DOI: 10.1038/s41467-024-54515-4.


Gene therapy for the leukodystrophies: From preclinical animal studies to clinical trials.

Metovic J, Li Y, Gong Y, Eichler F Neurotherapeutics. 2024; 21(4):e00443.

PMID: 39276676 PMC: 11418141. DOI: 10.1016/j.neurot.2024.e00443.


Impact of an irreversible β-galactosylceramidase inhibitor on the lipid profile of zebrafish embryos.

Guerra J, Belleri M, Paiardi G, Tobia C, Capoferri D, Corli M Comput Struct Biotechnol J. 2024; 23:1397-1407.

PMID: 38596316 PMC: 11002810. DOI: 10.1016/j.csbj.2024.03.023.


TALEN-mediated intron editing of HSPCs enables transgene expression restricted to the myeloid lineage.

Seclen E, Jang J, Lawal A, Pulicani S, Boyne A, Tkach D Mol Ther. 2024; 32(6):1643-1657.

PMID: 38582963 PMC: 11184328. DOI: 10.1016/j.ymthe.2024.04.001.


Gene and Cellular Therapies for Leukodystrophies.

Aerts-Kaya F, van Til N Pharmaceutics. 2023; 15(11).

PMID: 38004502 PMC: 10675548. DOI: 10.3390/pharmaceutics15112522.


References
1.
Castaneda J, Lim M, Cooper J, Pearce D . Immune system irregularities in lysosomal storage disorders. Acta Neuropathol. 2007; 115(2):159-74. DOI: 10.1007/s00401-007-0296-4. View

2.
Biffi A, Capotondo A, Fasano S, Del Carro U, Marchesini S, Azuma H . Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest. 2006; 116(11):3070-82. PMC: 1626132. DOI: 10.1172/JCI28873. View

3.
Laviola L, Natalicchio A, Giorgino F . The IGF-I signaling pathway. Curr Pharm Des. 2007; 13(7):663-9. DOI: 10.2174/138161207780249146. View

4.
Ryu J, Kim H, Chang E, Huang H, Banno Y, Kim H . Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J. 2006; 25(24):5840-51. PMC: 1698879. DOI: 10.1038/sj.emboj.7601430. View

5.
Biffi A, de Palma M, Quattrini A, Del Carro U, Amadio S, Visigalli I . Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest. 2004; 113(8):1118-29. PMC: 385395. DOI: 10.1172/JCI19205. View