» Articles » PMID: 20510729

The Immunological Functions of Saposins

Overview
Journal Adv Immunol
Date 2010 Jun 1
PMID 20510729
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Saposins or sphingolipid activator proteins (SAPs) are small, nonenzymatic glycoproteins that are ubiquitously present in lysosomes. SAPs comprise the five molecules saposins A-D and the GM2 activator protein. Saposins are essential for sphingolipid degradation and membrane digestion. On the one hand, they bind the respective hydrolases required to catabolize sphingolipid molecules; on the other hand, saposins can interact with intralysosomal membrane structures to render lipids accessible to their degrading enzymes. Thus, saposins bridge the physicochemical gap between lipid substrate and hydrophilic hydrolases. Accordingly, defects in saposin function can lead to lysosomal lipid accumulation. In addition to their specific functions in sphingolipid metabolism, saposins have membrane-perturbing properties. At the low pH of lysosomes, saposins get protonated and exhibit a high binding affinity for anionic phospholipids. Based on their universal principle to interact with membrane bilayers, we present the immunological functions of saposins with regard to lipid antigen presentation to CD1-restricted T cells, processing of apoptotic bodies for antigen delivery and cross-priming, as well as their potential antimicrobial impact.

Citing Articles

The proteotranscriptomic characterization of venom in the white seafan elucidates the evolution of Octocorallia arsenal.

Modica M, Leone S, Gerdol M, Greco S, Aurelle D, Oliverio M Open Biol. 2025; 15(3):250015.

PMID: 40068811 PMC: 11896702. DOI: 10.1098/rsob.250015.


Granulins rescue inflammation, lysosome dysfunction, lipofuscin, and neuropathology in a mouse model of progranulin deficiency.

Root J, Mendsaikhan A, Taylor G, Merino P, Nandy S, Wang M Cell Rep. 2024; 43(12):114985.

PMID: 39565694 PMC: 11773623. DOI: 10.1016/j.celrep.2024.114985.


Sulfation pathways in the maintenance of functional beta-cell mass and implications for diabetes.

Mueller J, Thomas P, Dalgaard L, da Silva Xavier G Essays Biochem. 2024; 68(4):509-522.

PMID: 39290144 PMC: 11625869. DOI: 10.1042/EBC20240034.


Structural and functional analyses of nematode-derived antimicrobial peptides support the occurrence of direct mechanisms of worm-microbiota interactions.

Rooney J, Rivera-de-Torre E, Li R, Mclean K, Price D, Nisbet A Comput Struct Biotechnol J. 2024; 23:1522-1533.

PMID: 38633385 PMC: 11021794. DOI: 10.1016/j.csbj.2024.04.019.


Immobilized enzyme cascade for targeted glycosylation.

Makrydaki E, Donini R, Krueger A, Royle K, Moya Ramirez I, Kuntz D Nat Chem Biol. 2024; 20(6):732-741.

PMID: 38321209 PMC: 11142912. DOI: 10.1038/s41589-023-01539-4.


References
1.
Winau F, Kaufmann S, Schaible U . Apoptosis paves the detour path for CD8 T cell activation against intracellular bacteria. Cell Microbiol. 2004; 6(7):599-607. DOI: 10.1111/j.1462-5822.2004.00408.x. View

2.
Zhou D, Cantu 3rd C, Sagiv Y, Schrantz N, Kulkarni A, Qi X . Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science. 2003; 303(5657):523-7. PMC: 2918537. DOI: 10.1126/science.1092009. View

3.
Schumann J, Facciotti F, Panza L, Michieletti M, Compostella F, Collmann A . Differential alteration of lipid antigen presentation to NKT cells due to imbalances in lipid metabolism. Eur J Immunol. 2007; 37(6):1431-41. DOI: 10.1002/eji.200737160. View

4.
Ernst W, Thoma-Uszynski S, Teitelbaum R, Ko C, HANSON D, Clayberger C . Granulysin, a T cell product, kills bacteria by altering membrane permeability. J Immunol. 2000; 165(12):7102-8. DOI: 10.4049/jimmunol.165.12.7102. View

5.
Rossmann M, Schultz-Heienbrok R, Behlke J, Remmel N, Alings C, Sandhoff K . Crystal structures of human saposins C andD: implications for lipid recognition and membrane interactions. Structure. 2008; 16(5):809-17. DOI: 10.1016/j.str.2008.02.016. View