» Articles » PMID: 20506199

FGF-2 Modulates Wnt Signaling in Undifferentiated HESC and IPS Cells Through Activated PI3-K/GSK3beta Signaling

Overview
Journal J Cell Physiol
Specialties Cell Biology
Physiology
Date 2010 May 28
PMID 20506199
Citations 59
Authors
Affiliations
Soon will be listed here.
Abstract

Fibroblast growth factor-2 (FGF-2) is widely used to culture human embryonic stem cells (hESC) and induced pluripotent stem (iPS) cells. Despite its importance in maintaining undifferentiated hESC phenotype, a lack of understanding in the role of FGF-2 still exists. Here, we investigate the signaling events in hESC following the addition of exogenous FGF-2. In this study, we show that hESC express all forms of fibroblast growth factor receptors (FGFRs) which co-localize on Oct3/4 positive cells. Furthermore, downregulation of Oct3/4 in hESC occurs following treatment with an FGFR inhibitor, suggesting that FGF signaling may regulate Oct3/4 expression. This is also observed in iPS cells. Also, downstream of FGF signaling, both mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase pathways (PI3-K) are activated following FGF-2 stimulation. Notably, inhibition of MAPK and PI3-K signaling using specific kinase inhibitors revealed that activated PI3-K, rather than MAPK, can mediate pluripotent marker expression. To understand the importance of PI3-K activation, activation of Wnt/beta-catenin by FGF-2 was investigated. Wnt signaling had been implicated to have a role in maintaining of pluripotent hESC. We found that upon FGF-2 stimulation, GSK3beta is phosphorylated following which nuclear translocation of beta-catenin and TCF/LEF activation occurs. Interestingly, inhibition of the Wnt pathway with Dikkopf-1 (DKK-1) resulted in only partial suppression of the FGF-2 induced TCF/LEF activity. Prolonged culture of hESC with DKK-1 did not affect pluripotent marker expression. These results suggest that FGF-2 mediated PI3-K signaling may have a direct role in modulating the downstream of Wnt pathway to maintain undifferentiated hESC.

Citing Articles

Recent advancements of human iPSC derived cardiomyocytes in drug screening and tissue regeneration.

Huang Y, Wang T, Lopez M, Hirano M, Hasan A, Shin S Microphysiol Syst. 2024; 4:2.

PMID: 39430371 PMC: 11488690. DOI: 10.21037/mps-20-3.


Toward the latest advancements in cardiac regeneration using induced pluripotent stem cells (iPSCs) technology: approaches and challenges.

Farboud S, Fathi E, Valipour B, Farahzadi R J Transl Med. 2024; 22(1):783.

PMID: 39175068 PMC: 11342568. DOI: 10.1186/s12967-024-05499-8.


DPPA2/4 Promote the Pluripotency and Proliferation of Bovine Extended Pluripotent Stem Cells by Upregulating the PI3K/AKT/GSK3β/β-Catenin Signaling Pathway.

Fang S, Wang J, Liu G, Qu B, Chunyu J, Xu W Cells. 2024; 13(5.

PMID: 38474345 PMC: 10930381. DOI: 10.3390/cells13050382.


Navigating the ERK1/2 MAPK Cascade.

Martin-Vega A, Cobb M Biomolecules. 2023; 13(10).

PMID: 37892237 PMC: 10605237. DOI: 10.3390/biom13101555.


inhibits differentiation of porcine-induced pluripotent stem cells through MAPK and PI3K signaling regulation.

Yang X, Wu X, Li W, Wu X, Shen Q, Li Y Zool Res. 2022; 43(6):911-922.

PMID: 36052561 PMC: 9700490. DOI: 10.24272/j.issn.2095-8137.2022.220.