» Articles » PMID: 20489202

Crystal Structure of CCM3, a Cerebral Cavernous Malformation Protein Critical for Vascular Integrity

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2010 May 22
PMID 20489202
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

CCM3 mutations are associated with cerebral cavernous malformation (CCM), a disease affecting 0.1-0.5% of the human population. CCM3 (PDCD10, TFAR15) is thought to form a CCM complex with CCM1 and CCM2; however, the molecular basis for these interactions is not known. We have determined the 2.5 A crystal structure of CCM3. This structure shows an all alpha-helical protein containing two domains, an N-terminal dimerization domain with a fold not previously observed, and a C-terminal focal adhesion targeting (FAT)-homology domain. We show that CCM3 binds CCM2 via this FAT-homology domain and that mutation of a highly conserved FAK-like hydrophobic pocket (HP1) abrogates CCM3-CCM2 interaction. This CCM3 FAT-homology domain also interacts with paxillin LD motifs using the same surface, and partial CCM3 co-localization with paxillin in cells is lost on HP1 mutation. Disease-related CCM3 truncations affect the FAT-homology domain suggesting a role for the FAT-homology domain in the etiology of CCM.

Citing Articles

Comprehensive CCM3 Mutational Analysis in Two Patients with Syndromic Cerebral Cavernous Malformation.

Galvao G, da Silva E, Trefilio L, Alves-Leon S, Fontes-Dantas F, de Souza J Transl Stroke Res. 2023; 15(2):411-421.

PMID: 36723700 DOI: 10.1007/s12975-023-01131-x.


The Dual Role of PDCD10 in Cancers: A Promising Therapeutic Target.

Liu J, Zhao K, Wu S, Li C, You C, Wang J Cancers (Basel). 2022; 14(23).

PMID: 36497468 PMC: 9740655. DOI: 10.3390/cancers14235986.


KRIT1-mediated regulation of neutrophil adhesion and motility.

Nobiletti N, Liu J, Glading A FEBS J. 2022; 290(4):1078-1095.

PMID: 36107440 PMC: 9957810. DOI: 10.1111/febs.16627.


Is Location Everything? Regulation of the Endothelial CCM Signaling Complex.

Swamy H, Glading A Front Cardiovasc Med. 2022; 9:954780.

PMID: 35898265 PMC: 9309484. DOI: 10.3389/fcvm.2022.954780.


Endothelial Cell-Pericyte Interactions in the Pathogenesis of Cerebral Cavernous Malformations (CCMs).

Min W, Zhou J Cold Spring Harb Perspect Med. 2022; 13(3.

PMID: 35667709 PMC: 9760308. DOI: 10.1101/cshperspect.a041188.


References
1.
Davis I, Murray L, Richardson J, Richardson D . MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 2004; 32(Web Server issue):W615-9. PMC: 441536. DOI: 10.1093/nar/gkh398. View

2.
He Y, Zhang H, Yu L, Gunel M, Boggon T, Chen H . Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal. 2010; 3(116):ra26. PMC: 3052863. DOI: 10.1126/scisignal.2000722. View

3.
Revencu N, Vikkula M . Cerebral cavernous malformation: new molecular and clinical insights. J Med Genet. 2006; 43(9):716-21. PMC: 2564569. DOI: 10.1136/jmg.2006.041079. View

4.
Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T . ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 2005; 33(Web Server issue):W299-302. PMC: 1160131. DOI: 10.1093/nar/gki370. View

5.
Guclu B, Ozturk A, Pricola K, Bilguvar K, Shin D, ORoak B . Mutations in apoptosis-related gene, PDCD10, cause cerebral cavernous malformation 3. Neurosurgery. 2005; 57(5):1008-13. DOI: 10.1227/01.neu.0000180811.56157.e1. View