» Articles » PMID: 20466885

MiR-33 Contributes to the Regulation of Cholesterol Homeostasis

Overview
Journal Science
Specialty Science
Date 2010 May 15
PMID 20466885
Citations 627
Authors
Affiliations
Soon will be listed here.
Abstract

Cholesterol metabolism is tightly regulated at the cellular level. Here we show that miR-33, an intronic microRNA (miRNA) located within the gene encoding sterol-regulatory element-binding factor-2 (SREBF-2), a transcriptional regulator of cholesterol synthesis, modulates the expression of genes involved in cellular cholesterol transport. In mouse and human cells, miR-33 inhibits the expression of the adenosine triphosphate-binding cassette (ABC) transporter, ABCA1, thereby attenuating cholesterol efflux to apolipoprotein A1. In mouse macrophages, miR-33 also targets ABCG1, reducing cholesterol efflux to nascent high-density lipoprotein (HDL). Lentiviral delivery of miR-33 to mice represses ABCA1 expression in the liver, reducing circulating HDL levels. Conversely, silencing of miR-33 in vivo increases hepatic expression of ABCA1 and plasma HDL levels. Thus, miR-33 appears to regulate both HDL biogenesis in the liver and cellular cholesterol efflux.

Citing Articles

MiR-33 as a novel diagnostic biomarker for distinguishing cholesterol from adenomatous polyps: a case-control study.

Hu X, Zhang P, Wang T, Li Q, Li M, Zhao Z Hereditas. 2025; 162(1):37.

PMID: 40087680 DOI: 10.1186/s41065-025-00407-6.


Cellular Phenotypic Transformation During Atherosclerosis: The Potential Role of miRNAs as Biomarkers.

Wassaifi S, Kaeffer B, Zarrouk S Int J Mol Sci. 2025; 26(5).

PMID: 40076710 PMC: 11900927. DOI: 10.3390/ijms26052083.


Inhibiting MiR-33a-3p Expression Fails to Enhance ApoAI-Mediated Cholesterol Efflux in Pro-Inflammatory Endothelial Cells.

Huang K, Pokhrel A, Echesabal-Chen J, Scott J, Bruce T, Jo H Medicina (Kaunas). 2025; 61(2).

PMID: 40005445 PMC: 11857470. DOI: 10.3390/medicina61020329.


The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review).

Kozlov D, Rodimova S, Kuznetsova D Sovrem Tekhnologii Med. 2025; 15(5):54-79.

PMID: 39967915 PMC: 11832066. DOI: 10.17691/stm2023.15.5.06.


Epigenetic regulation in coronary artery disease: from mechanisms to emerging therapies.

Gao R, Liu M, Yang H, Shen Y, Xia N Front Mol Biosci. 2025; 12:1548355.

PMID: 39959304 PMC: 11825346. DOI: 10.3389/fmolb.2025.1548355.


References
1.
Wellington C, Walker E, Suarez A, Kwok A, Bissada N, Singaraja R . ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Lab Invest. 2002; 82(3):273-83. DOI: 10.1038/labinvest.3780421. View

2.
Krutzfeldt J, Rajewsky N, Braich R, Rajeev K, Tuschl T, Manoharan M . Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005; 438(7068):685-9. DOI: 10.1038/nature04303. View

3.
Krieger M . Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J Clin Invest. 2001; 108(6):793-7. PMC: 200944. DOI: 10.1172/JCI14011. View

4.
Oram J, Vaughan A . ABCA1-mediated transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Curr Opin Lipidol. 2000; 11(3):253-60. DOI: 10.1097/00041433-200006000-00005. View

5.
Brooks-Wilson A, Marcil M, Clee S, Zhang L, Roomp K, Van Dam M . Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999; 22(4):336-45. DOI: 10.1038/11905. View