» Articles » PMID: 20457934

Single-base Resolution Mapping of H1-nucleosome Interactions and 3D Organization of the Nucleosome

Overview
Specialty Science
Date 2010 May 12
PMID 20457934
Citations 106
Authors
Affiliations
Soon will be listed here.
Abstract

Despite the key role of the linker histone H1 in chromatin structure and dynamics, its location and interactions with nucleosomal DNA have not been elucidated. In this work we have used a combination of electron cryomicroscopy, hydroxyl radical footprinting, and nanoscale modeling to analyze the structure of precisely positioned mono-, di-, and trinucleosomes containing physiologically assembled full-length histone H1 or truncated mutants of this protein. Single-base resolution *OH footprinting shows that the globular domain of histone H1 (GH1) interacts with the DNA minor groove located at the center of the nucleosome and contacts a 10-bp region of DNA localized symmetrically with respect to the nucleosomal dyad. In addition, GH1 interacts with and organizes about one helical turn of DNA in each linker region of the nucleosome. We also find that a seven amino acid residue region (121-127) in the COOH terminus of histone H1 was required for the formation of the stem structure of the linker DNA. A molecular model on the basis of these data and coarse-grain DNA mechanics provides novel insights on how the different domains of H1 interact with the nucleosome and predicts a specific H1-mediated stem structure within linker DNA.

Citing Articles

Roles of Histone H2B, H3 and H4 Variants in Cancer Development and Prognosis.

Lai P, Gong X, Chan K Int J Mol Sci. 2024; 25(17.

PMID: 39273649 PMC: 11395991. DOI: 10.3390/ijms25179699.


HMGB1 restores a dynamic chromatin environment in the presence of linker histone by deforming nucleosomal DNA.

Saunders H, Chio U, Moore C, Ramani V, Cheng Y, Narlikar G bioRxiv. 2024; .

PMID: 39229246 PMC: 11370580. DOI: 10.1101/2024.08.23.609244.


A DNA condensation code for linker histones.

Watson M, Sabirova D, Hardy M, Pan Y, Carpentier D, Yates H Proc Natl Acad Sci U S A. 2024; 121(33):e2409167121.

PMID: 39116133 PMC: 11331069. DOI: 10.1073/pnas.2409167121.


Structural basis for linker histone H5-nucleosome binding and chromatin fiber compaction.

Li W, Hu J, Song F, Yu J, Peng X, Zhang S Cell Res. 2024; 34(10):707-724.

PMID: 39103524 PMC: 11442585. DOI: 10.1038/s41422-024-01009-z.


Potential biomarker for diagnosis and therapy of sepsis: Lactylation.

Sun Z, Song Y, Li J, Li Y, Yu Y, Wang X Immun Inflamm Dis. 2023; 11(10):e1042.

PMID: 37904710 PMC: 10571012. DOI: 10.1002/iid3.1042.


References
1.
Balasubramanian B, Pogozelski W, Tullius T . DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Sci U S A. 1998; 95(17):9738-43. PMC: 21406. DOI: 10.1073/pnas.95.17.9738. View

2.
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E . UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12. DOI: 10.1002/jcc.20084. View

3.
Pruss D, Bartholomew B, Persinger J, Hayes J, Arents G, Moudrianakis E . An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres. Science. 1996; 274(5287):614-7. DOI: 10.1126/science.274.5287.614. View

4.
Saeki H, Ohsumi K, Aihara H, Ito T, Hirose S, Ura K . Linker histone variants control chromatin dynamics during early embryogenesis. Proc Natl Acad Sci U S A. 2005; 102(16):5697-702. PMC: 556016. DOI: 10.1073/pnas.0409824102. View

5.
Brown D, Izard T, Misteli T . Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo. Nat Struct Mol Biol. 2006; 13(3):250-5. PMC: 1868459. DOI: 10.1038/nsmb1050. View