» Articles » PMID: 20432022

Fetal Evaluation of Spine Dysraphism

Overview
Journal Pediatr Radiol
Specialty Pediatrics
Date 2010 May 1
PMID 20432022
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Spinal dysraphism or neural tube defects (NTD) encompass a heterogeneous group of congenital spinal anomalies that result from the defective closure of the neural tube early in gestation with anomalous development of the caudal cell mass. Advances in ultrasound and MRI have dramatically improved the diagnosis and therapy of spinal dysraphism and caudal spinal anomalies both prenatally and postnatally. Advances in prenatal US including high frequency linear transducers and three dimensional imaging can provide detailed information concerning spinal anomalies. MR imaging is a complementary tool that can further elucidate spine abnormalities as well as associated central nervous system and non-CNS anomalies. Recent studies have suggested that 3-D CT can help further assess fetal spine anomalies in the third trimester. With the advent of fetal therapy including surgery, accurate prenatal diagnosis of open and closed spinal dysraphism becomes critical in appropriate counselling and perinatal management.

Citing Articles

Fetal Scoliosis: Natural History and Outcomes.

Walters S, Barkham B, Bishop T, Bernard J, Coroyannakis C, Thilaganathan B J Am Acad Orthop Surg Glob Res Rev. 2024; 8(6).

PMID: 38996079 PMC: 11132347. DOI: 10.5435/JAAOSGlobal-D-24-00093.


Unveiling the Integral Role of Magnetic Resonance Imaging in the Comprehensive Evaluation and Diagnosis of Spinal Dysraphism.

Yeli R, S B D, H C S, G S G, Duddukuri S, Kumar M P Cureus. 2024; 16(5):e60972.

PMID: 38916024 PMC: 11194140. DOI: 10.7759/cureus.60972.


Fetal Magnetic Resonance Imaging in Association With Antenatal Ultrasound in the Diagnosis of Caudal Dysgenesis: Report of Two Cases.

Mahmoud M, Asghar T, Elkammash T, Housseini A, Gad A Cureus. 2023; 15(2):e35485.

PMID: 36999114 PMC: 10045648. DOI: 10.7759/cureus.35485.


Early prenatal diagnosis of an atypical phenotype of sacral spina bifida.

Bohiltea R, Mihai B, Munteanu O, Ducu I, Dumitru V, Gheorghe C J Med Life. 2022; 14(5):716-721.

PMID: 35027976 PMC: 8742886. DOI: 10.25122/jml-2021-0292.


MRI depiction of fetal brain abnormalities.

Pfeifer C, Willard S, Cornejo P Acta Radiol Open. 2020; 8(12):2058460119894987.

PMID: 31903224 PMC: 6927204. DOI: 10.1177/2058460119894987.


References
1.
Johnson M, Sutton L, Rintoul N, Crombleholme T, Flake A, Howell L . Fetal myelomeningocele repair: short-term clinical outcomes. Am J Obstet Gynecol. 2003; 189(2):482-7. DOI: 10.1067/s0002-9378(03)00295-3. View

2.
Meuli M, Meuli-Simmen C, Hutchins G, Seller M, Harrison M, Adzick N . The spinal cord lesion in human fetuses with myelomeningocele: implications for fetal surgery. J Pediatr Surg. 1997; 32(3):448-52. DOI: 10.1016/s0022-3468(97)90603-5. View

3.
Budorick N, Pretorius D, Grafe M, Lou K . Ossification of the fetal spine. Radiology. 1991; 181(2):561-5. DOI: 10.1148/radiology.181.2.1924805. View

4.
Proctor M, Bauer S, Scott R . The effect of surgery for split spinal cord malformation on neurologic and urologic function. Pediatr Neurosurg. 2000; 32(1):13-9. DOI: 10.1159/000028891. View

5.
Brunelle F, Sonigo P, Boddaert N, Benachi A, Dumez Y . [MRI and fetal multidetector CT in the diagnosis of fetal malformations]. Bull Acad Natl Med. 2009; 192(8):1559-73. View