» Articles » PMID: 20413286

FRAP and Kinetic Modeling in the Analysis of Nuclear Protein Dynamics: What Do We Really Know?

Overview
Publisher Elsevier
Specialty Cell Biology
Date 2010 Apr 24
PMID 20413286
Citations 91
Authors
Affiliations
Soon will be listed here.
Abstract

The binding of nuclear proteins to chromatin in live cells has been analyzed by kinetic modeling procedures applied to experimental data from fluorescence recovery after photobleaching (FRAP). The kinetic models have yielded a number of important biological predictions about transcription, but concerns have arisen about the accuracy of these predictions. First, different studies using different kinetic models have arrived at very different predictions for the same or similar proteins. Second, some of these divergent predictions have been shown to arise from technical issues rather than biological differences. For confidence and accuracy, gold standards for the measurement of in vivo binding must be established by extensive cross validation using both different experimental methods and different kinetic modeling procedures.

Citing Articles

Nonlinear mixed-effects models to analyze actin dynamics in dendritic spines.

Di Credico G, Pelucchi S, Pauli F, Stringhi R, Marcello E, Edefonti V Sci Rep. 2025; 15(1):5790.

PMID: 39962126 PMC: 11833086. DOI: 10.1038/s41598-025-87154-w.


Microdomains heterogeneity in the thylakoid membrane proteins visualized by super-resolution microscopy.

Kana R, Sediva B, PrasIl O Photosynthetica. 2024; 61(4):483-491.

PMID: 39649485 PMC: 11586846. DOI: 10.32615/ps.2023.043.


3D photopolymerized microstructured scaffolds influence nuclear deformation, nucleo/cytoskeletal protein organization, and gene regulation in mesenchymal stem cells.

Donnaloja F, Raimondi M, Messa L, Barzaghini B, Carnevali F, Colombo E APL Bioeng. 2023; 7(3):036112.

PMID: 37692376 PMC: 10491463. DOI: 10.1063/5.0153215.


From the membrane to the nucleus: mechanical signals and transcription regulation.

Oses C, De Rossi M, Bruno L, Verneri P, Diaz M, Benitez B Biophys Rev. 2023; 15(4):671-683.

PMID: 37681098 PMC: 10480138. DOI: 10.1007/s12551-023-01103-3.


The Utility of Fluorescence Recovery after Photobleaching (FRAP) to Study the Plasma Membrane.

Day C, Kang M Membranes (Basel). 2023; 13(5).

PMID: 37233553 PMC: 10221041. DOI: 10.3390/membranes13050492.


References
1.
Phair R, Scaffidi P, Elbi C, Vecerova J, Dey A, Ozato K . Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol. 2004; 24(14):6393-402. PMC: 434243. DOI: 10.1128/MCB.24.14.6393-6402.2004. View

2.
Braga J, Desterro J, Carmo-Fonseca M . Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol Biol Cell. 2004; 15(10):4749-60. PMC: 519164. DOI: 10.1091/mbc.e04-06-0496. View

3.
Hallen M, Layton A . Expanding the scope of quantitative FRAP analysis. J Theor Biol. 2009; 262(2):295-305. DOI: 10.1016/j.jtbi.2009.10.020. View

4.
Stasevich T, Mueller F, Brown D, McNally J . Dissecting the binding mechanism of the linker histone in live cells: an integrated FRAP analysis. EMBO J. 2010; 29(7):1225-34. PMC: 2857466. DOI: 10.1038/emboj.2010.24. View

5.
Lele T, Wagner S, Nickerson J, Ingber D . Methods for measuring rates of protein binding to insoluble scaffolds in living cells: histone H1-chromatin interactions. J Cell Biochem. 2006; 99(5):1334-42. DOI: 10.1002/jcb.20997. View