» Articles » PMID: 20409817

Total Internal Reflection Fluorescence (TIRF) Microscopy of Chlamydomonas Flagella

Overview
Specialty Cell Biology
Date 2010 Apr 23
PMID 20409817
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

The eukaryotic flagellum is host to a variety of dynamic behaviors, including flagellar beating, the motility of glycoproteins in the flagellar membrane, and intraflagellar transport (IFT), the bidirectional traffic of protein particles between the flagellar base and tip. IFT is of particular interest, as it plays integral roles in flagellar length control, cell signaling, development, and human disease. However, our ability to understand dynamic flagellar processes such as IFT is limited in large part by the fidelity with which we can image these behaviors in living cells. This chapter introduces the application of total internal reflection fluorescence (TIRF) microscopy to visualize the flagella of Chlamydomonas reinhardtii. The advantages and challenges of TIRF are discussed in comparison to confocal and differential interference contrast techniques. This chapter also reviews current IFT insights gleaned from TIRF microscopy of Chlamydomonas and provides an outlook on the future of the technique, with particular emphasis on combining TIRF with other emerging imaging technologies.

Citing Articles

as a model system to study cilia and flagella using genetics, biochemistry, and microscopy.

Marshall W Front Cell Dev Biol. 2024; 12:1412641.

PMID: 38872931 PMC: 11169674. DOI: 10.3389/fcell.2024.1412641.


Distribution and bulk flow analyses of the intraflagellar transport (IFT) motor kinesin-2 support an "on-demand" model for Chlamydomonas ciliary length control.

Patel M, Griffin P, Olson S, Dai J, Hou Y, Malik T Cytoskeleton (Hoboken). 2024; 81(11):586-604.

PMID: 38456596 PMC: 11380706. DOI: 10.1002/cm.21851.


Loss of ARL13 impedes BBSome-dependent cargo export from Chlamydomonas cilia.

Dai J, Zhang G, Alkhofash R, Mekonnen B, Saravanan S, Xue B J Cell Biol. 2022; 221(10).

PMID: 36040375 PMC: 9436004. DOI: 10.1083/jcb.202201050.


Conversion of anterograde into retrograde trains is an intrinsic property of intraflagellar transport.

Nievergelt A, Zykov I, Diener D, Chhatre A, Buchholz T, Delling M Curr Biol. 2022; 32(18):4071-4078.e4.

PMID: 35926510 PMC: 9521741. DOI: 10.1016/j.cub.2022.07.033.


In vivo imaging shows continued association of several IFT-A, IFT-B and dynein complexes while IFT trains U-turn at the tip.

Wingfield J, Mekonnen B, Mengoni I, Liu P, Jordan M, Diener D J Cell Sci. 2021; 134(18).

PMID: 34415027 PMC: 8487644. DOI: 10.1242/jcs.259010.


References
1.
Rosenbaum J, Moulder J, Ringo D . Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol. 1969; 41(2):600-19. PMC: 2107765. DOI: 10.1083/jcb.41.2.600. View

2.
Qin H, Wang Z, Diener D, Rosenbaum J . Intraflagellar transport protein 27 is a small G protein involved in cell-cycle control. Curr Biol. 2007; 17(3):193-202. PMC: 1905864. DOI: 10.1016/j.cub.2006.12.040. View

3.
Lechtreck K, Delmotte P, Robinson M, Sanderson M, Witman G . Mutations in Hydin impair ciliary motility in mice. J Cell Biol. 2008; 180(3):633-43. PMC: 2234243. DOI: 10.1083/jcb.200710162. View

4.
Engel B, Ludington W, Marshall W . Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol. 2009; 187(1):81-9. PMC: 2762100. DOI: 10.1083/jcb.200812084. View

5.
Axelrod D . Total internal reflection fluorescence microscopy in cell biology. Traffic. 2001; 2(11):764-74. DOI: 10.1034/j.1600-0854.2001.21104.x. View