» Articles » PMID: 20399729

Microfluidic Local Perfusion Chambers for the Visualization and Manipulation of Synapses

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2010 Apr 20
PMID 20399729
Citations 130
Authors
Affiliations
Soon will be listed here.
Abstract

The polarized nature of neurons and the size and density of synapses complicates the manipulation and visualization of cell biological processes that control synaptic function. Here we developed a microfluidic local perfusion (microLP) chamber to access and manipulate synaptic regions and presynaptic and postsynaptic compartments in vitro. This chamber directs the formation of synapses in >100 parallel rows connecting separate neuron populations. A perfusion channel transects the parallel rows, allowing access with high spatial and temporal resolution to synaptic regions. We used this chamber to investigate synapse-to-nucleus signaling. Using the calcium indicator dye Fluo-4 NW, we measured changes in calcium at dendrites and somata, following local perfusion of glutamate. Exploiting the high temporal resolution of the chamber, we exposed synapses to "spaced" or "massed" application of glutamate and then examined levels of pCREB in somata. Lastly, we applied the metabotropic receptor agonist DHPG to dendrites and observed increases in Arc transcription and Arc transcript localization.

Citing Articles

Biomaterials for neuroengineering: applications and challenges.

Wu H, Feng E, Yin H, Zhang Y, Chen G, Zhu B Regen Biomater. 2025; 12:rbae137.

PMID: 40007617 PMC: 11855295. DOI: 10.1093/rb/rbae137.


A programmable microfluidic platform to monitor calcium dynamics in microglia during inflammation.

Shebindu A, Kaveti D, Umutoni L, Kirk G, Burton M, Jones C Microsyst Nanoeng. 2024; 10:106.

PMID: 39101003 PMC: 11294448. DOI: 10.1038/s41378-024-00733-1.


A fluid-walled microfluidic platform for human neuron microcircuits and directed axotomy.

Nebuloni F, Do Q, Cook P, Walsh E, Wade-Martins R Lab Chip. 2024; 24(13):3252-3264.

PMID: 38841815 PMC: 11198392. DOI: 10.1039/d4lc00107a.


Real-time imaging of axonal membrane protein life cycles.

Tyagi S, Higerd-Rusli G, Akin E, Baker C, Liu S, Dib-Hajj F Nat Protoc. 2024; 19(9):2771-2802.

PMID: 38831222 PMC: 11721981. DOI: 10.1038/s41596-024-00997-x.


Neuropathogenesis-on-chips for neurodegenerative diseases.

Amartumur S, Nguyen H, Huynh T, Kim T, Woo R, Oh E Nat Commun. 2024; 15(1):2219.

PMID: 38472255 PMC: 10933492. DOI: 10.1038/s41467-024-46554-8.


References
1.
Lee S, Escobedo-Lozoya Y, Szatmari E, Yasuda R . Activation of CaMKII in single dendritic spines during long-term potentiation. Nature. 2009; 458(7236):299-304. PMC: 2719773. DOI: 10.1038/nature07842. View

2.
Vogt A, Wrobel G, Meyer W, Knoll W, Offenhausser A . Synaptic plasticity in micropatterned neuronal networks. Biomaterials. 2004; 26(15):2549-57. DOI: 10.1016/j.biomaterials.2004.07.031. View

3.
Whitesides G, Ostuni E, Takayama S, Jiang X, Ingber D . Soft lithography in biology and biochemistry. Annu Rev Biomed Eng. 2001; 3:335-73. DOI: 10.1146/annurev.bioeng.3.1.335. View

4.
Unger M, Chou H, Thorsen T, Scherer A, Quake S . Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 2001; 288(5463):113-6. DOI: 10.1126/science.288.5463.113. View

5.
Branco T, Staras K, Darcy K, Goda Y . Local dendritic activity sets release probability at hippocampal synapses. Neuron. 2008; 59(3):475-85. PMC: 6390949. DOI: 10.1016/j.neuron.2008.07.006. View