Measuring Storage and Loss Moduli Using Optical Tweezers: Broadband Microrheology
Overview
Physiology
Public Health
Authors
Affiliations
We present an experimental procedure to perform broadband microrheological measurements with optical tweezers. A generalized Langevin equation is adopted to relate the time-dependent trajectory of a particle in an imposed flow to the frequency-dependent moduli of the complex fluid. This procedure allows us to measure the material linear viscoelastic properties across the widest frequency range achievable with optical tweezers.
Optical Halo: A Proof of Concept for a New Broadband Microrheology Tool.
Ramirez J, Gibson G, Tassieri M Micromachines (Basel). 2024; 15(7).
PMID: 39064399 PMC: 11278636. DOI: 10.3390/mi15070889.
Exploiting Matrix Stiffness to Overcome Drug Resistance.
Aydin H, Ozcelikkale A, Acar A ACS Biomater Sci Eng. 2024; 10(8):4682-4700.
PMID: 38967485 PMC: 11322920. DOI: 10.1021/acsbiomaterials.4c00445.
Fundamental Aspects of Phase-Separated Biomolecular Condensates.
Zhou H, Kota D, Qin S, Prasad R Chem Rev. 2024; 124(13):8550-8595.
PMID: 38885177 PMC: 11260227. DOI: 10.1021/acs.chemrev.4c00138.
Shining Light in Mechanobiology: Optical Tweezers, Scissors, and Beyond.
Stilgoe A, Favre-Bulle I, Watson M, Gomez-Godinez V, Berns M, Preece D ACS Photonics. 2024; 11(3):917-940.
PMID: 38523746 PMC: 10958612. DOI: 10.1021/acsphotonics.4c00064.
Fully angularly resolved 3D microrheology with optical tweezers.
Matheson A, Mendonca T, Smith M, Sutcliffe B, Fernandez A, Paterson L Rheol Acta. 2024; 63(3):205-217.
PMID: 38440195 PMC: 10908627. DOI: 10.1007/s00397-024-01435-1.