» Articles » PMID: 20356844

Structural Basis for Substrate Selectivity in Human Maltase-glucoamylase and Sucrase-isomaltase N-terminal Domains

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2010 Apr 2
PMID 20356844
Citations 58
Authors
Affiliations
Soon will be listed here.
Abstract

Human maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) are small intestinal enzymes that work concurrently to hydrolyze the mixture of linear alpha-1,4- and branched alpha-1,6-oligosaccharide substrates that typically make up terminal starch digestion products. MGAM and SI are each composed of duplicated catalytic domains, N- and C-terminal, which display overlapping substrate specificities. The N-terminal catalytic domain of human MGAM (ntMGAM) has a preference for short linear alpha-1,4-oligosaccharides, whereas N-terminal SI (ntSI) has a broader specificity for both alpha-1,4- and alpha-1,6-oligosaccharides. Here we present the crystal structure of the human ntSI, in apo form to 3.2 A and in complex with the inhibitor kotalanol to 2.15 A resolution. Structural comparison with the previously solved structure of ntMGAM reveals key active site differences in ntSI, including a narrow hydrophobic +1 subsite, which may account for its additional substrate specificity for alpha-1,6 substrates.

Citing Articles

Optimization and semi-continuous fermentation of gluco-oligosaccharide production with YRK005.

Kim S, Park J, Jeong H, Park Y Food Sci Biotechnol. 2025; 34(4):991-1000.

PMID: 39974872 PMC: 11832820. DOI: 10.1007/s10068-024-01703-z.


Antidiabetic Potential of : -Glucosidase Inhibition, Postprandial Blood Glucose Reduction, Toxicity Evaluation, and Molecular Docking.

Sangkanu S, Heemman A, Phoopha S, Pitakbut T, Udomuksorn W, Dej-Adisai S Scientifica (Cairo). 2025; 2025:6650349.

PMID: 39950148 PMC: 11824848. DOI: 10.1155/sci5/6650349.


Review of the Relationships Between Human Gut Microbiome, Diet, and Obesity.

Patloka O, Komprda T, Franke G Nutrients. 2024; 16(23).

PMID: 39683390 PMC: 11643520. DOI: 10.3390/nu16233996.


Click Reaction Inspired Enzyme Inhibitors in Diabetes Care: An Update in the Field of Chronic Metabolic Disorder.

Mudgal D, Yadav N, Srivastava G, Mishra M, Mishra V Curr Pharm Des. 2024; 31(4):261-291.

PMID: 39410885 DOI: 10.2174/0113816128310031240923062555.


Potential anti-obesity effect of saponin metabolites from adzuki beans: A computational approach.

Moussa A, Alanzi A, Luo J, Chung S, Xu B Food Sci Nutr. 2024; 12(5):3612-3627.

PMID: 38726452 PMC: 11077217. DOI: 10.1002/fsn3.4032.


References
1.
Sim L, Quezada-Calvillo R, Sterchi E, Nichols B, Rose D . Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol. 2007; 375(3):782-92. DOI: 10.1016/j.jmb.2007.10.069. View

2.
Asano N . Glycosidase inhibitors: update and perspectives on practical use. Glycobiology. 2003; 13(10):93R-104R. DOI: 10.1093/glycob/cwg090. View

3.
Lovering A, Lee S, Kim Y, Withers S, Strynadka N . Mechanistic and structural analysis of a family 31 alpha-glycosidase and its glycosyl-enzyme intermediate. J Biol Chem. 2004; 280(3):2105-15. DOI: 10.1074/jbc.M410468200. View

4.
Schuttelkopf A, van Aalten D . PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 8):1355-63. DOI: 10.1107/S0907444904011679. View

5.
Otwinowski Z, Minor W . Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997; 276:307-26. DOI: 10.1016/S0076-6879(97)76066-X. View