» Articles » PMID: 20351052

An Epigenetic Switch Governing Daughter Cell Separation in Bacillus Subtilis

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2010 Mar 31
PMID 20351052
Citations 100
Authors
Affiliations
Soon will be listed here.
Abstract

Growing cells of Bacillus subtilis are a bistable mixture of individual motile cells in which genes for daughter cell separation and motility are ON, and chains of sessile cells in which these genes are OFF. How this ON/OFF switch is controlled has been mysterious. Here we report that a complex of the SinR and SlrR proteins binds to and represses genes involved in cell separation and motility. We also report that SinR and SlrR constitute a double-negative feedback loop in which SinR represses the gene for SlrR (slrR), and, by binding to (titrating) SinR, SlrR prevents SinR from repressing slrR. Thus, SlrR indirectly derepresses its own gene, creating a self-reinforcing loop. Finally, we show that, once activated, the loop remains locked in a high SlrR state in which cell separation and motility genes are OFF for extended periods of time. SinR and SlrR constitute an epigenetic switch for controlling genes involved in cell separation and motility.

Citing Articles

Molecular profiling and bioinformatics approaches of biofilm formation in ionizing radiation-resistant Bacillus subtilis, isolated from geothermal spring in Ramsar, the North of Iran.

Ali D, Vazifehmand R, Malik M, Rukayadi Y, Radu S, Mirpour M World J Microbiol Biotechnol. 2025; 41(3):97.

PMID: 40055277 DOI: 10.1007/s11274-025-04307-9.


The extracytoplasmic sigma factor σ supports biofilm formation and increases biocontrol efficacy in Bacillus velezensis 118.

Cai Y, Tao H, Gaballa A, Pi H, Helmann J Sci Rep. 2025; 15(1):5315.

PMID: 39939707 PMC: 11822112. DOI: 10.1038/s41598-025-89284-7.


Flagellar point mutation causes social aggregation in laboratory-adapted under conditions that promote swimming.

Alvi S, Mondelo V, Boyle J, Buck A, Gejo J, Mason M J Bacteriol. 2024; 206(10):e0019924.

PMID: 39248522 PMC: 11500573. DOI: 10.1128/jb.00199-24.


Regulates Biofilm Dispersal in FZB42.

Shao L, Shen Z, Li M, Guan C, Fan B, Chai Y Int J Mol Sci. 2024; 25(10).

PMID: 38791239 PMC: 11120784. DOI: 10.3390/ijms25105201.


The motility-matrix production switch in -a modeling perspective.

Dannenberg S, Penning J, Simm A, Klumpp S J Bacteriol. 2023; 206(1):e0004723.

PMID: 38088582 PMC: 10810213. DOI: 10.1128/jb.00047-23.


References
1.
Smith T, Blackman S, Foster S . Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology (Reading). 2000; 146 ( Pt 2):249-262. DOI: 10.1099/00221287-146-2-249. View

2.
Cozy L, Kearns D . Gene position in a long operon governs motility development in Bacillus subtilis. Mol Microbiol. 2010; 76(2):273-85. PMC: 2911795. DOI: 10.1111/j.1365-2958.2010.07112.x. View

3.
Kuroda A, Sekiguchi J . High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin (flaD) mutation. J Bacteriol. 1993; 175(3):795-801. PMC: 196219. DOI: 10.1128/jb.175.3.795-801.1993. View

4.
Sonenshein A . Control of sporulation initiation in Bacillus subtilis. Curr Opin Microbiol. 2000; 3(6):561-6. DOI: 10.1016/s1369-5274(00)00141-7. View

5.
Mirel D, Lauer P, CHAMBERLIN M . Identification of flagellar synthesis regulatory and structural genes in a sigma D-dependent operon of Bacillus subtilis. J Bacteriol. 1994; 176(15):4492-500. PMC: 196267. DOI: 10.1128/jb.176.15.4492-4500.1994. View