» Articles » PMID: 20235828

Structure and Dynamics of a Processive Brownian Motor: the Translating Ribosome

Overview
Publisher Annual Reviews
Specialty Biochemistry
Date 2010 Mar 19
PMID 20235828
Citations 131
Authors
Affiliations
Soon will be listed here.
Abstract

There is mounting evidence indicating that protein synthesis is driven and regulated by mechanisms that direct stochastic, large-scale conformational fluctuations of the translational apparatus. This mechanistic paradigm implies that a free-energy landscape governs the conformational states that are accessible to and sampled by the translating ribosome. This scenario presents interdependent opportunities and challenges for structural and dynamic studies of protein synthesis. Indeed, the synergism between cryogenic electron microscopic and X-ray crystallographic structural studies, on the one hand, and single-molecule fluorescence resonance energy transfer (smFRET) dynamic studies, on the other, is emerging as a powerful means for investigating the complex free-energy landscape of the translating ribosome and uncovering the mechanisms that direct the stochastic conformational fluctuations of the translational machinery. In this review, we highlight the principal insights obtained from cryogenic electron microscopic, X-ray crystallographic, and smFRET studies of the elongation stage of protein synthesis and outline the emerging themes, questions, and challenges that lie ahead in mechanistic studies of translation.

Citing Articles

Impacts of ribosomal RNA sequence variation on gene expression and phenotype.

Welfer G, Brady R, Natchiar S, Watson Z, Rundlet E, Alejo J Philos Trans R Soc Lond B Biol Sci. 2025; 380(1921):20230379.

PMID: 40045785 PMC: 11883441. DOI: 10.1098/rstb.2023.0379.


The role of ribosomal protein networks in ribosome dynamics.

Timsit Y, Sergeant-Perthuis G, Bennequin D Nucleic Acids Res. 2025; 53(1.

PMID: 39788545 PMC: 11711686. DOI: 10.1093/nar/gkae1308.


Phosphorylation of P-stalk proteins defines the ribosomal state for interaction with auxiliary protein factors.

Filipek K, Blanchet S, Molestak E, Zaciura M, Wu C, Horbowicz-Drozdzal P EMBO Rep. 2024; 25(12):5478-5506.

PMID: 39468350 PMC: 11624264. DOI: 10.1038/s44319-024-00297-1.


Taming the ribosome.

Puglisi J Biophys J. 2024; 123(18):2964-2965.

PMID: 39097772 PMC: 11427767. DOI: 10.1016/j.bpj.2024.07.045.


Multi-Channel smFRET study reveals a Compact conformation of EF-G on the Ribosome.

Johnson J, Steele J, Lin R, Stepanov V, Gavriliuc M, Wang Y bioRxiv. 2024; .

PMID: 38328191 PMC: 10849647. DOI: 10.1101/2024.01.27.577133.


References
1.
Blaha G, Stanley R, Steitz T . Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science. 2009; 325(5943):966-70. PMC: 3296453. DOI: 10.1126/science.1175800. View

2.
Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T . Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem. 2008; 77:51-76. DOI: 10.1146/annurev.biochem.77.070606.101543. View

3.
Wang Y, Qin H, Kudaravalli R, Kirillov S, Dempsey G, Pan D . Single-molecule structural dynamics of EF-G--ribosome interaction during translocation. Biochemistry. 2007; 46(38):10767-75. DOI: 10.1021/bi700657d. View

4.
Marshall R, Aitken C, Puglisi J . GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Mol Cell. 2009; 35(1):37-47. PMC: 4447082. DOI: 10.1016/j.molcel.2009.06.008. View

5.
Beringer M, Rodnina M . The ribosomal peptidyl transferase. Mol Cell. 2007; 26(3):311-21. DOI: 10.1016/j.molcel.2007.03.015. View