» Articles » PMID: 20210437

Spectral Imaging Reveals Microvessel Physiology and Function from Anastomoses to Thromboses

Overview
Journal J Biomed Opt
Date 2010 Mar 10
PMID 20210437
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Abnormal microvascular physiology and function is common in many diseases. Numerous pathologies include hypervascularity, aberrant angiogenesis, or abnormal vascular remodeling among the characteristic features of the disease, and quantitative imaging and measurement of microvessel function can be important to increase understanding of these diseases. Several optical techniques are useful for direct imaging of microvascular function. Spectral imaging is one such technique that can be used to assess microvascular oxygen transport function with high spatial and temporal resolution in microvessel networks through measurements of hemoglobin saturation. We highlight novel observation made with our intravital microscopy spectral imaging system employed with mouse dorsal skin-fold window chambers for imaging hemoglobin saturation in microvessel networks. Specifically, we image acute oxygenation fluctuations in a tumor microvessel network, the development of arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia, and the formation of spontaneous and induced microvascular thromboses and occlusions.

Citing Articles

Hyperspectral wide-field-of-view imaging to study dynamic microcirculatory changes during hypoxia.

Lucas A, Munoz C, Cabrales P Am J Physiol Heart Circ Physiol. 2022; 323(1):H49-H58.

PMID: 35522555 PMC: 9169845. DOI: 10.1152/ajpheart.00624.2021.


Evaluating online filtering algorithms to enhance dynamic multispectral optoacoustic tomography.

OKelly D, Guo Y, Mason R Photoacoustics. 2020; 19:100184.

PMID: 32509522 PMC: 7264082. DOI: 10.1016/j.pacs.2020.100184.


Targeting Artificial Tumor Stromal Targets for Molecular Imaging of Tumor Vascular Hypoxia.

Koonce N, Levy J, Hardee M, Jamshidi-Parsian A, Vang K, Sharma S PLoS One. 2015; 10(8):e0135607.

PMID: 26308944 PMC: 4550408. DOI: 10.1371/journal.pone.0135607.


Limitations of the dorsal skinfold window chamber model in evaluating anti-angiogenic therapy during early phase of angiogenesis.

Biel N, Lee J, Sorg B, Siemann D Vasc Cell. 2014; 6:17.

PMID: 25101168 PMC: 4123308. DOI: 10.1186/2045-824X-6-17.


II. Capsular vaso-mimicry formed by transgenic mammary tumor spheroids implanted ectopically into mouse dorsal skin fold: implications for cellular mechanisms of metastasis.

Witkiewicz H, Oh P, Schnitzer J F1000Res. 2014; 2:9.

PMID: 24555024 PMC: 3869488. DOI: 10.12688/f1000research.2-9.v2.


References
1.
Otrock Z, Mahfouz R, Makarem J, Shamseddine A . Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis. 2007; 39(2):212-20. DOI: 10.1016/j.bcmd.2007.04.001. View

2.
Kyrle P, Eichinger S . Deep vein thrombosis. Lancet. 2005; 365(9465):1163-74. DOI: 10.1016/S0140-6736(05)71880-8. View

3.
Izatt J, Kulkarni M, Yazdanfar S, Barton J, Welch A . In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt Lett. 2008; 22(18):1439-41. DOI: 10.1364/ol.22.001439. View

4.
Simons M . Angiogenesis, arteriogenesis, and diabetes: paradigm reassessed?. J Am Coll Cardiol. 2005; 46(5):835-7. DOI: 10.1016/j.jacc.2005.06.008. View

5.
Secomb T, Hsu R, Park E, Dewhirst M . Green's function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann Biomed Eng. 2005; 32(11):1519-29. DOI: 10.1114/b:abme.0000049036.08817.44. View