» Articles » PMID: 20186267

Absolute Humidity and the Seasonal Onset of Influenza in the Continental United States

Overview
Journal PLoS Biol
Specialty Biology
Date 2010 Feb 27
PMID 20186267
Citations 328
Authors
Affiliations
Soon will be listed here.
Abstract

Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent reanalysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here, we extend these findings to the human population level, showing that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions.

Citing Articles

Intersecting Memories of Immunity and Climate: Potential Multiyear Impacts of the El Niño-Southern Oscillation on Infectious Disease Spread.

Chung M, Vecchi G, Yang W, Grenfell B, Metcalf C Geohealth. 2025; 9(2):e2024GH001193.

PMID: 39935807 PMC: 11811887. DOI: 10.1029/2024GH001193.


Improving influenza forecast in the tropics and subtropics: a case study of Hong Kong.

Yuan H, Lau E, Cowling B, Yang W J R Soc Interface. 2025; 22(222):20240649.

PMID: 39809330 PMC: 11732400. DOI: 10.1098/rsif.2024.0649.


One-year epidemiological patterns of respiratory pathogens across age, gender, and seasons in Chengdu during the post-COVID era.

Li X, Ma J, Li Y, Hu Z Sci Rep. 2025; 15(1):357.

PMID: 39747544 PMC: 11697200. DOI: 10.1038/s41598-024-84586-8.


Integrating dynamical modeling and phylogeographic inference to characterize global influenza circulation.

Parino F, Gustani-Buss E, Bedford T, Suchard M, Trovao N, Rambaut A PNAS Nexus. 2024; 4(1):pgae561.

PMID: 39737444 PMC: 11683419. DOI: 10.1093/pnasnexus/pgae561.


HealthPass: a contactless check-in and adaptive access control system for lowering cluster infection risk in public health crisis.

Luo G, Wang Y, Hong L, He X, Wang J, Shen Q Front Public Health. 2024; 12:1448901.

PMID: 39735762 PMC: 11672792. DOI: 10.3389/fpubh.2024.1448901.


References
1.
Miller M, Viboud C, Balinska M, Simonsen L . The signature features of influenza pandemics--implications for policy. N Engl J Med. 2009; 360(25):2595-8. DOI: 10.1056/NEJMp0903906. View

2.
Viboud C, Bjornstad O, Smith D, Simonsen L, Miller M, Grenfell B . Synchrony, waves, and spatial hierarchies in the spread of influenza. Science. 2006; 312(5772):447-51. DOI: 10.1126/science.1125237. View

3.
Fang R, Min Jou W, Huylebroeck D, Devos R, Fiers W . Complete structure of A/duck/Ukraine/63 influenza hemagglutinin gene: animal virus as progenitor of human H3 Hong Kong 1968 influenza hemagglutinin. Cell. 1981; 25(2):315-23. DOI: 10.1016/0092-8674(81)90049-0. View

4.
Longini Jr I, Halloran M, Nizam A, Yang Y . Containing pandemic influenza with antiviral agents. Am J Epidemiol. 2004; 159(7):623-33. DOI: 10.1093/aje/kwh092. View

5.
Brundage J, Shanks G . Deaths from bacterial pneumonia during 1918-19 influenza pandemic. Emerg Infect Dis. 2008; 14(8):1193-9. PMC: 2600384. DOI: 10.3201/eid1408.071313. View