» Articles » PMID: 20185728

Cortical Plasticity Induced by Inhibitory Neuron Transplantation

Overview
Journal Science
Specialty Science
Date 2010 Feb 27
PMID 20185728
Citations 152
Authors
Affiliations
Soon will be listed here.
Abstract

Critical periods are times of pronounced brain plasticity. During a critical period in the postnatal development of the visual cortex, the occlusion of one eye triggers a rapid reorganization of neuronal responses, a process known as ocular dominance plasticity. We have shown that the transplantation of inhibitory neurons induces ocular dominance plasticity after the critical period. Transplanted inhibitory neurons receive excitatory synapses, make inhibitory synapses onto host cortical neurons, and promote plasticity when they reach a cellular age equivalent to that of endogenous inhibitory neurons during the normal critical period. These findings suggest that ocular dominance plasticity is regulated by the execution of a maturational program intrinsic to inhibitory neurons. By inducing plasticity, inhibitory neuron transplantation may facilitate brain repair.

Citing Articles

Integration of Transplanted Interneurons Over a New Period of Ocular Dominance Plasticity in Adult Visual Cortex.

Rakela B, Sun J, Marchetta P, Alvarez-Buylla A, Hasenstaub A, Stryker M bioRxiv. 2025; .

PMID: 39829855 PMC: 11741398. DOI: 10.1101/2024.12.27.630358.


Oligodendrocytes and myelin limit neuronal plasticity in visual cortex.

Xin W, Kaneko M, Roth R, Zhang A, Nocera S, Ding J Nature. 2024; 633(8031):856-863.

PMID: 39169185 PMC: 11424474. DOI: 10.1038/s41586-024-07853-8.


Interneuron Diversity: How Form Becomes Function.

De Marco Garcia N, Fishell G Cold Spring Harb Perspect Biol. 2024; .

PMID: 39038846 PMC: 11751130. DOI: 10.1101/cshperspect.a041513.


High Magnesium Promotes the Recovery of Binocular Vision from Amblyopia via TRPM7.

Dai M, Li J, Hao X, Li N, Zheng M, He M Neurosci Bull. 2024; 40(9):1245-1260.

PMID: 38833201 PMC: 11365890. DOI: 10.1007/s12264-024-01242-x.


Fractal Phototherapy in Maximizing Retina and Brain Plasticity.

Zueva M, Neroeva N, Zhuravleva A, Bogolepova A, Kotelin V, Fadeev D Adv Neurobiol. 2024; 36:585-637.

PMID: 38468055 DOI: 10.1007/978-3-031-47606-8_31.


References
1.
Hensch T . Critical period regulation. Annu Rev Neurosci. 2004; 27:549-79. DOI: 10.1146/annurev.neuro.27.070203.144327. View

2.
Hadjantonakis A, Gertsenstein M, Ikawa M, Okabe M, Nagy A . Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech Dev. 1998; 76(1-2):79-90. DOI: 10.1016/s0925-4773(98)00093-8. View

3.
Hensch T, Fagiolini M, Mataga N, Stryker M, Baekkeskov S, Kash S . Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science. 1998; 282(5393):1504-8. PMC: 2851625. DOI: 10.1126/science.282.5393.1504. View

4.
Cang J, Kalatsky V, Lowel S, Stryker M . Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse. Vis Neurosci. 2005; 22(5):685-91. PMC: 2553096. DOI: 10.1017/S0952523805225178. View

5.
Hanover J, Huang Z, Tonegawa S, Stryker M . Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J Neurosci. 1999; 19(22):RC40. PMC: 2424259. View