» Articles » PMID: 20176572

A Microfluidic Oligonucleotide Synthesizer

Overview
Specialty Biochemistry
Date 2010 Feb 24
PMID 20176572
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

De novo gene and genome synthesis enables the design of any sequence without the requirement of a pre-existing template as in traditional genetic engineering methods. The ability to mass produce synthetic genes holds great potential for biological research, but widespread availability of de novo DNA constructs is currently hampered by their high cost. In this work, we describe a microfluidic platform for parallel solid phase synthesis of oligonucleotides that can greatly reduce the cost of gene synthesis by reducing reagent consumption (by 100-fold) while maintaining a approximately 100 pmol synthesis scale so there is no need for amplification before assembly. Sixteen oligonucleotides were synthesized in parallel on this platform and then successfully used in a ligation-mediated assembly method to generate DNA constructs approximately 200 bp in length.

Citing Articles

Droplet-based μChopper device with a 3D-printed pneumatic valving layer and a simple photometer for absorbance based fructosamine quantification in human serum.

Kayirangwa Y, Mohibullah M, Easley C Analyst. 2023; 148(19):4810-4819.

PMID: 37605899 PMC: 10530610. DOI: 10.1039/d3an01149f.


Uncertainties in synthetic DNA-based data storage.

Xu C, Zhao C, Ma B, Liu H Nucleic Acids Res. 2021; 49(10):5451-5469.

PMID: 33836076 PMC: 8191772. DOI: 10.1093/nar/gkab230.


Monodisperse drops templated by 3D-structured microparticles.

Wu C, Ouyang M, Wang B, de Rutte J, Joo A, Jacobs M Sci Adv. 2020; 6(45).

PMID: 33148643 PMC: 7673687. DOI: 10.1126/sciadv.abb9023.


Next generation gene synthesis: From microarrays to genomes.

Kuhn P, Wagner K, Heil K, Liss M, Netuschil N Eng Life Sci. 2020; 17(1):6-13.

PMID: 32624724 PMC: 6999524. DOI: 10.1002/elsc.201600121.


3DμF - Interactive Design Environment for Continuous Flow Microfluidic Devices.

Sanka R, Lippai J, Samarasekera D, Nemsick S, Densmore D Sci Rep. 2019; 9(1):9166.

PMID: 31235804 PMC: 6591506. DOI: 10.1038/s41598-019-45623-z.


References
1.
Tian J, Gong H, Sheng N, Zhou X, Gulari E, Gao X . Accurate multiplex gene synthesis from programmable DNA microchips. Nature. 2004; 432(7020):1050-4. DOI: 10.1038/nature03151. View

2.
Au L, Yang F, Yang W, Lo S, Kao C . Gene synthesis by a LCR-based approach: high-level production of leptin-L54 using synthetic gene in Escherichia coli. Biochem Biophys Res Commun. 1998; 248(1):200-3. DOI: 10.1006/bbrc.1998.8929. View

3.
Mueller S, Coleman J, Wimmer E . Putting synthesis into biology: a viral view of genetic engineering through de novo gene and genome synthesis. Chem Biol. 2009; 16(3):337-47. PMC: 2728443. DOI: 10.1016/j.chembiol.2009.03.002. View

4.
Gao X, Gulari E, Zhou X . In situ synthesis of oligonucleotide microarrays. Biopolymers. 2004; 73(5):579-96. DOI: 10.1002/bip.20005. View

5.
Kong D, Carr P, Chen L, Zhang S, Jacobson J . Parallel gene synthesis in a microfluidic device. Nucleic Acids Res. 2007; 35(8):e61. PMC: 1885655. DOI: 10.1093/nar/gkm121. View