» Articles » PMID: 20174556

The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule

Abstract

Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% beta-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change.

Citing Articles

Broadly neutralizing antibodies isolated from HEV convalescents confer protective effects in human liver-chimeric mice.

Ssebyatika G, Dinkelborg K, Stroh L, Hinte F, Corneillie L, Hueffner L Nat Commun. 2025; 16(1):1995.

PMID: 40011441 PMC: 11865592. DOI: 10.1038/s41467-025-57182-1.


A human monoclonal antibody neutralizing SARS-CoV-2 Omicron variants containing the L452R mutation.

Stein S, Hansen G, Ssebyatika G, Stroh L, Ochulor O, Herold E J Virol. 2024; 98(12):e0122324.

PMID: 39494911 PMC: 11650997. DOI: 10.1128/jvi.01223-24.


Structures of the Foamy virus fusion protein reveal an unexpected link with the F protein of paramyxo- and pneumoviruses.

Fernandez I, Bontems F, Brun D, Coquin Y, Goverde C, Correia B Sci Adv. 2024; 10(41):eado7035.

PMID: 39392890 PMC: 11468914. DOI: 10.1126/sciadv.ado7035.


Human tetraspanin CD81 facilitates invasion of into human epithelial cells.

Alvarez K, Goral L, Suwandi A, Lasswitz L, Zapatero-Belinchon F, Ehrhardt K Virulence. 2024; 15(1):2399792.

PMID: 39239914 PMC: 11423668. DOI: 10.1080/21505594.2024.2399792.


Viral modulation of type II interferon increases T cell adhesion and virus spread.

Jacobsen C, Pluckebaum N, Ssebyatika G, Beyer S, Mendes-Monteiro L, Wang J Nat Commun. 2024; 15(1):5318.

PMID: 38909022 PMC: 11193720. DOI: 10.1038/s41467-024-49657-4.


References
1.
von Hahn T, Rice C . Hepatitis C virus entry. J Biol Chem. 2007; 283(7):3689-93. DOI: 10.1074/jbc.R700024200. View

2.
Flint M, Thomas J, Maidens C, Shotton C, Levy S, Barclay W . Functional analysis of cell surface-expressed hepatitis C virus E2 glycoprotein. J Virol. 1999; 73(8):6782-90. PMC: 112763. DOI: 10.1128/JVI.73.8.6782-6790.1999. View

3.
Scarselli E, Ansuini H, Cerino R, Roccasecca R, Acali S, Filocamo G . The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 2002; 21(19):5017-25. PMC: 129051. DOI: 10.1093/emboj/cdf529. View

4.
Lavillette D, Pecheur E, Donot P, Fresquet J, Molle J, Corbau R . Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus. J Virol. 2007; 81(16):8752-65. PMC: 1951381. DOI: 10.1128/JVI.02642-06. View

5.
Falkowska E, Kajumo F, Garcia E, Reinus J, Dragic T . Hepatitis C virus envelope glycoprotein E2 glycans modulate entry, CD81 binding, and neutralization. J Virol. 2007; 81(15):8072-9. PMC: 1951298. DOI: 10.1128/JVI.00459-07. View