» Articles » PMID: 34940686

Algal and Cyanobacterial Lectins and Their Antimicrobial Properties

Overview
Journal Mar Drugs
Publisher MDPI
Specialties Biology
Pharmacology
Date 2021 Dec 23
PMID 34940686
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Lectins are proteins with a remarkably high affinity and specificity for carbohydrates. Many organisms naturally produce them, including animals, plants, fungi, protists, bacteria, archaea, and viruses. The present report focuses on lectins produced by marine or freshwater organisms, in particular algae and cyanobacteria. We explore their structure, function, classification, and antimicrobial properties. Furthermore, we look at the expression of lectins in heterologous systems and the current research on the preclinical and clinical evaluation of these fascinating molecules. The further development of these molecules might positively impact human health, particularly the prevention or treatment of diseases caused by pathogens such as human immunodeficiency virus, influenza, and severe acute respiratory coronaviruses, among others.

Citing Articles

Advanced probiotics: bioengineering and their therapeutic application.

Parvin T, Sadras S Mol Biol Rep. 2024; 51(1):361.

PMID: 38403783 DOI: 10.1007/s11033-024-09309-8.


Lactic acid bacterial surface display of scytovirin inhibitors for anti-ebolavirus infection.

Wiggins J, Nguyen N, Wei W, Wang L, Hollingsead Olson H, Xiang S Front Microbiol. 2023; 14:1269869.

PMID: 38075878 PMC: 10704896. DOI: 10.3389/fmicb.2023.1269869.


Genome-wide analysis of lectins in cyanobacteria: from evolutionary mode to motif patterns.

Xu T, Cui Y, Qin S, Wang Y BMC Genomics. 2023; 24(1):688.

PMID: 37974077 PMC: 10655256. DOI: 10.1186/s12864-023-09790-8.


The Antiviral Potential of Algal Lectins.

Alvarez C, Felix C, Lemos M Mar Drugs. 2023; 21(10).

PMID: 37888450 PMC: 10608189. DOI: 10.3390/md21100515.


Cyanometabolites: molecules with immense antiviral potential.

Singh U, Gandhi H, Nikita , Bhattacharya J, Tandon R, Tiwari G Arch Microbiol. 2023; 205(5):164.

PMID: 37012452 PMC: 10069739. DOI: 10.1007/s00203-023-03514-y.


References
1.
Chiang H, Cohen G, Eisenberg R . Identification of functional regions of herpes simplex virus glycoprotein gD by using linker-insertion mutagenesis. J Virol. 1994; 68(4):2529-43. PMC: 236731. DOI: 10.1128/JVI.68.4.2529-2543.1994. View

2.
Sexton A, Drake P, Mahmood N, Harman S, Shattock R, Ma J . Transgenic plant production of Cyanovirin-N, an HIV microbicide. FASEB J. 2005; 20(2):356-8. DOI: 10.1096/fj.05-4742fje. View

3.
Barton C, Kouokam J, Lasnik A, Foreman O, Cambon A, Brock G . Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models. Antimicrob Agents Chemother. 2013; 58(1):120-7. PMC: 3910741. DOI: 10.1128/AAC.01407-13. View

4.
OKeefe B, Giomarelli B, Barnard D, Shenoy S, Chan P, McMahon J . Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J Virol. 2009; 84(5):2511-21. PMC: 2820936. DOI: 10.1128/JVI.02322-09. View

5.
Krey T, dAlayer J, Kikuti C, Saulnier A, Damier-Piolle L, Petitpas I . The disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of the molecule. PLoS Pathog. 2010; 6(2):e1000762. PMC: 2824758. DOI: 10.1371/journal.ppat.1000762. View