» Articles » PMID: 20159450

Regulation of Synaptic Structure and Function by FMRP-associated MicroRNAs MiR-125b and MiR-132

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2010 Feb 18
PMID 20159450
Citations 443
Authors
Affiliations
Soon will be listed here.
Abstract

MicroRNAs (miRNAs) are noncoding RNAs that suppress translation of specific mRNAs. The miRNA machinery interacts with fragile X mental retardation protein (FMRP), which functions as translational repressor. We show that miR-125b and miR-132, as well as several other miRNAs, are associated with FMRP in mouse brain. miR-125b and miR-132 had largely opposing effects on dendritic spine morphology and synaptic physiology in hippocampal neurons. FMRP knockdown ameliorates the effect of miRNA overexpression on spine morphology. We identified NMDA receptor subunit NR2A as a target of miR-125b and show that NR2A mRNA is specifically associated with FMRP in brain. In hippocampal neurons, NR2A expression is negatively regulated through its 3' UTR by FMRP, miR-125b, and Argonaute 1. Regulation of NR2A 3'UTR by FMRP depends in part on miR-125b. Because NMDA receptor subunit composition profoundly affects synaptic plasticity, these observations have implications for the pathophysiology of fragile X syndrome, in which plasticity is altered.

Citing Articles

The miR-451a facilitates natural killer cell-associated immune deficiency after ischemic stroke.

Li Y, Guan X, Lan T, Zhang Z, Zhang Y, Jiang S J Cereb Blood Flow Metab. 2025; :271678X251321641.

PMID: 39985210 PMC: 11846095. DOI: 10.1177/0271678X251321641.


Trinucleotide repeat expansion and RNA dysregulation in fragile X syndrome: emerging therapeutic approaches.

Jung S, Richter J RNA. 2024; 31(3):307-313.

PMID: 39725461 PMC: 11874960. DOI: 10.1261/rna.080270.124.


Transplantation of Exosomes Derived From Human Wharton's Jelly Mesenchymal Stromal Cells Enhances Functional Improvement in Stroke Rats.

Chiu Y, Wu K, Yu S, Wu K, Hsieh C, Chou Y Cell Transplant. 2024; 33:9636897241296366.

PMID: 39624898 PMC: 11613244. DOI: 10.1177/09636897241296366.


Small Differences and Big Changes: The Many Variables of MicroRNA Expression and Function in the Brain.

Parkins E, Gross C J Neurosci. 2024; 44(32).

PMID: 39111834 PMC: 11308354. DOI: 10.1523/JNEUROSCI.0365-24.2024.


Mechanistic insights into the basis of widespread RNA localization.

Chekulaeva M Nat Cell Biol. 2024; 26(7):1037-1046.

PMID: 38956277 DOI: 10.1038/s41556-024-01444-5.


References
1.
Stefani G, Slack F . Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008; 9(3):219-30. DOI: 10.1038/nrm2347. View

2.
Schratt G, Tuebing F, Nigh E, Kane C, Sabatini M, Kiebler M . A brain-specific microRNA regulates dendritic spine development. Nature. 2006; 439(7074):283-9. DOI: 10.1038/nature04367. View

3.
Brown V, Jin P, Ceman S, Darnell J, ODonnell W, Tenenbaum S . Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell. 2001; 107(4):477-87. DOI: 10.1016/s0092-8674(01)00568-2. View

4.
Tada T, Simonetta A, Batterton M, Kinoshita M, Edbauer D, Sheng M . Role of Septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr Biol. 2007; 17(20):1752-8. PMC: 2194646. DOI: 10.1016/j.cub.2007.09.039. View

5.
Darnell J, Mostovetsky O, Darnell R . FMRP RNA targets: identification and validation. Genes Brain Behav. 2005; 4(6):341-9. DOI: 10.1111/j.1601-183X.2005.00144.x. View