Objective:
To investigate the benefit of using time-resolved, laser-induced fluorescence spectroscopy for diagnosing malignant and premalignant lesions of the oral cavity.
Design:
The carcinogen 7,12-dimethylbenz[a]anthracene (DMBA) was applied to 1 cheek pouch of 19 hamsters. The contralateral pouch and the cheek pouches of 3 hamsters without DMBA exposure served as controls.
Setting:
University of California, Davis.
Participants:
Twenty-two golden/Syrian hamsters.
Intervention:
A nitrogen pulse laser was used to induce tissue autofluorescence between the wavelengths of 360 and 650 nm.
Main Outcome Measures:
Spectral intensities and time-domain measurements were obtained and compared with the histopathologic findings at each corresponding site.
Results:
Spectral intensities and lifetime values at 3 spectral bands (SBs; SB1 = 380 +/- 10 nm; SB2 = 460 +/- 10 nm, and SB3 = 635 +/- 10 nm) allowed for discrimination among healthy epithelium, dysplasia, carcinoma in situ, and invasive carcinoma. The lifetime values at SB2 were the most important when distinguishing the lesions using only time-resolved parameters. An algorithm combining spectral fluorescence parameters derived from both spectral and time-domain parameters (peak intensities, average fluorescence lifetimes, and the Laguerre coefficient [zero-order]) for healthy epithelium, dysplasia, carcinoma in situ, and invasive carcinoma provided the best diagnostic discrimination, with 100%, 100%, 69.2%, and 76.5% sensitivity and 100%, 92.2%, 97.1%, and 96.2% specificity, respectively.
Conclusions:
The addition of time-resolved fluorescence-derived parameters significantly improves the capability of fluorescence spectroscopy-based diagnostics in the hamster buccal pouch. This technique provides a potential noninvasive diagnostic instrument for head and neck cancer.
Citing Articles
Detection of oral mucosal lesions by the fluorescence spectroscopy and classification of cancerous stages by support vector machine.
Kumar P, Rathod S, Pradhan A
Lasers Med Sci. 2024; 39(1):42.
PMID: 38240832
DOI: 10.1007/s10103-024-03995-3.
In-vivo Testing of Oral Mucosal Lesions with an In-house Developed Portable Imaging Device and Comparison with Spectroscopy Results.
Nath Sah A, Kumar P, Pradhan A
J Fluoresc. 2023; 33(4):1375-1383.
PMID: 36701084
DOI: 10.1007/s10895-023-03152-z.
First Clinical Results of Fluorescence Lifetime-enhanced Tumor Imaging Using Receptor-targeted Fluorescent Probes.
Pal R, Hom M, van den Berg N, Lwin T, Lee Y, Prilutskiy A
Clin Cancer Res. 2022; 28(11):2373-2384.
PMID: 35302604
PMC: 9167767.
DOI: 10.1158/1078-0432.CCR-21-3429.
Mesoscopic fluorescence lifetime imaging: Fundamental principles, clinical applications and future directions.
Alfonso-Garcia A, Bec J, Weyers B, Marsden M, Zhou X, Li C
J Biophotonics. 2021; 14(6):e202000472.
PMID: 33710785
PMC: 8579869.
DOI: 10.1002/jbio.202000472.
In vivo detection of oral precancer using a fluorescence-based, in-house-fabricated device: a Mahalanobis distance-based classification.
Kumar P, Kanaujia S, Singh A, Pradhan A
Lasers Med Sci. 2019; 34(6):1243-1251.
PMID: 30659473
DOI: 10.1007/s10103-019-02720-9.
Automated analysis of multimodal fluorescence lifetime imaging and optical coherence tomography data for the diagnosis of oral cancer in the hamster cheek pouch model.
Pande P, Shrestha S, Park J, Gimenez-Conti I, Brandon J, Applegate B
Biomed Opt Express. 2016; 7(5):2000-15.
PMID: 27231638
PMC: 4871098.
DOI: 10.1364/BOE.7.002000.
Fluorescence Identification of Head and Neck Squamous Cell Carcinoma and High-Risk Oral Dysplasia With BLZ-100, a Chlorotoxin-Indocyanine Green Conjugate.
Baik F, Hansen S, Knoblaugh S, Sahetya D, Mitchell R, Xu C
JAMA Otolaryngol Head Neck Surg. 2016; 142(4):330-8.
PMID: 26892902
PMC: 4972605.
DOI: 10.1001/jamaoto.2015.3617.
Native Fluorescence and Time Resolved Fluorescence Spectroscopic Characterization of Normal and Malignant Oral Tissues Under UV Excitation--an In Vitro Study.
Udayakumar K, Yuvaraj M, Awad F, Jayanth V, Aruna P, Koteeswaran D
J Fluoresc. 2013; 24(2):613-23.
PMID: 24292864
DOI: 10.1007/s10895-013-1335-2.
Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques.
Fatakdawala H, Poti S, Zhou F, Sun Y, Bec J, Liu J
Biomed Opt Express. 2013; 4(9):1724-41.
PMID: 24049693
PMC: 3771843.
DOI: 10.1364/BOE.4.001724.
Comparison of PET imaging with 64Cu-liposomes and 18F-FDG in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch model of oral dysplasia and squamous cell carcinoma.
Mahakian L, Farwell D, Zhang H, Seo J, Poirier B, Tinling S
Mol Imaging Biol. 2013; 16(2):284-92.
PMID: 24019092
PMC: 3984137.
DOI: 10.1007/s11307-013-0676-1.
In vivo validation of a bimodal technique combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy for diagnosis of oral carcinoma.
Sun Y, Xie H, Liu J, Lam M, Chaudhari A, Zhou F
J Biomed Opt. 2012; 17(11):116003.
PMID: 23117798
PMC: 3484195.
DOI: 10.1117/1.JBO.17.11.116003.
A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion.
Liu J, Sun Y, Qi J, Marcu L
Phys Med Biol. 2012; 57(4):843-65.
PMID: 22290334
PMC: 3407553.
DOI: 10.1088/0031-9155/57/4/843.
Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging.
Fite B, Decaris M, Sun Y, Sun Y, Lam A, Ho C
Tissue Eng Part C Methods. 2011; 17(4):495-504.
PMID: 21303258
PMC: 3065732.
DOI: 10.1089/ten.tec.2010.0368.
A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization.
Park J, Jo J, Shrestha S, Pande P, Wan Q, Applegate B
Biomed Opt Express. 2011; 1(1):186-200.
PMID: 21258457
PMC: 3005181.
DOI: 10.1364/BOE.1.000186.
Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma.
Meier J, Xie H, Sun Y, Sun Y, Hatami N, Poirier B
Otolaryngol Head Neck Surg. 2010; 142(6):838-44.
PMID: 20493355
PMC: 3335733.
DOI: 10.1016/j.otohns.2010.02.005.