» Articles » PMID: 20153622

Host-microbe Interactions in the Developing Zebrafish

Overview
Publisher Elsevier
Date 2010 Feb 16
PMID 20153622
Citations 110
Authors
Affiliations
Soon will be listed here.
Abstract

The amenability of the zebrafish to in vivo imaging and genetic analysis has fueled expanded use of this vertebrate model to investigate the molecular and cellular foundations of host-microbe relationships. Study of microbial encounters in zebrafish hosts has concentrated on developing embryonic and larval stages, when the advantages of the zebrafish model are maximized. A comprehensive understanding of these host-microbe interactions requires appreciation of the developmental context into which a microbe is introduced, as well as the effects of that microbial challenge on host ontogeny. In this review, we discuss how in vivo imaging and genetic analysis in zebrafish has advanced our knowledge of host-microbe interactions in the context of a developing vertebrate host. We focus on recent insights into immune cell ontogeny and function, commensal microbial relationships in the intestine, and microbial pathogenesis in zebrafish hosts.

Citing Articles

Mild ultrasound-assisted alkali de-esterification modified pectins: Characterization and structure-activity relationships in immunomodulatory effects.

Guo H, Li D, Miao B, Feng K, Chen G, Gan R Ultrason Sonochem. 2025; 112():107215.

PMID: 39742686 PMC: 11751549. DOI: 10.1016/j.ultsonch.2024.107215.


Transcriptional profiling of zebrafish intestines identifies macrophages as host cells for human norovirus infection.

Roux E, Willms R, Van Dycke J, Cortes Calabuig A, Van Espen L, Schoofs G Gut Microbes. 2024; 16(1):2431167.

PMID: 39584740 PMC: 11591593. DOI: 10.1080/19490976.2024.2431167.


A zebrafish gene with sequence similarities to human uromodulin and GP2 displays extensive evolutionary diversification among teleost and confers resistance to bacterial infection.

Naruoka S, Sakata S, Kawabata S, Hashiguchi Y, Daikoku E, Sakaguchi S Heliyon. 2024; 10(18):e37510.

PMID: 39309883 PMC: 11415648. DOI: 10.1016/j.heliyon.2024.e37510.


Zebrafish () behavioral phenotypes are not underscored by different gut microbiomes.

Ayayee P, Wong R Ecol Evol. 2024; 14(9):e70237.

PMID: 39219576 PMC: 11362613. DOI: 10.1002/ece3.70237.


A new protocol for multispecies bacterial infections in zebrafish and their monitoring through automated image analysis.

Schmitz D, Wechsler T, Li H, Menze B, Kummerli R PLoS One. 2024; 19(8):e0304827.

PMID: 39116043 PMC: 11309447. DOI: 10.1371/journal.pone.0304827.


References
1.
Novoa B, Romero A, Mulero V, Rodriguez I, Fernandez I, Figueras A . Zebrafish (Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV). Vaccine. 2006; 24(31-32):5806-16. DOI: 10.1016/j.vaccine.2006.05.015. View

2.
Clay H, Davis J, Beery D, Huttenlocher A, Lyons S, Ramakrishnan L . Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe. 2007; 2(1):29-39. PMC: 3115716. DOI: 10.1016/j.chom.2007.06.004. View

3.
Menudier A, Rougier F, Bosgiraud C . Comparative virulence between different strains of Listeria in zebrafish (Brachydanio rerio) and mice. Pathol Biol (Paris). 1996; 44(9):783-9. View

4.
Ng A, de Jong-Curtain T, Mawdsley D, White S, Shin J, Appel B . Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol. 2005; 286(1):114-35. DOI: 10.1016/j.ydbio.2005.07.013. View

5.
Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin H . Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity. 2006; 25(6):963-75. DOI: 10.1016/j.immuni.2006.10.015. View