» Articles » PMID: 20150539

Integrative Urinary Peptidomics in Renal Transplantation Identifies Biomarkers for Acute Rejection

Overview
Specialty Nephrology
Date 2010 Feb 13
PMID 20150539
Citations 59
Authors
Affiliations
Soon will be listed here.
Abstract

Noninvasive methods to diagnose rejection of renal allografts are unavailable. Mass spectrometry followed by multiple-reaction monitoring provides a unique approach to identify disease-specific urine peptide biomarkers. Here, we performed urine peptidomic analysis of 70 unique samples from 50 renal transplant patients and 20 controls (n = 20), identifying a specific panel of 40 peptides for acute rejection (AR). Peptide sequencing revealed suggestive mechanisms of graft injury with roles for proteolytic degradation of uromodulin (UMOD) and several collagens, including COL1A2 and COL3A1. The 40-peptide panel discriminated AR in training (n = 46) and test (n = 24) sets (area under ROC curve >0.96). Integrative analysis of transcriptional signals from paired renal transplant biopsies, matched with the urine samples, revealed coordinated transcriptional changes for the corresponding genes in addition to dysregulation of extracellular matrix proteins in AR (MMP-7, SERPING1, and TIMP1). Quantitative PCR on an independent set of 34 transplant biopsies with and without AR validated coordinated changes in expression for the corresponding genes in rejection tissue. A six-gene biomarker panel (COL1A2, COL3A1, UMOD, MMP-7, SERPING1, TIMP1) classified AR with high specificity and sensitivity (area under ROC curve = 0.98). These data suggest that changes in collagen remodeling characterize AR and that detection of the corresponding proteolytic degradation products in urine provides a noninvasive diagnostic approach.

Citing Articles

Matrix metalloproteinases in kidney homeostasis and diseases: an update.

Tan R, Liu Y Am J Physiol Renal Physiol. 2024; 327(6):F967-F984.

PMID: 39361724 PMC: 11687849. DOI: 10.1152/ajprenal.00179.2024.


Recent progress in mass spectrometry-based urinary proteomics.

Joshi N, Garapati K, Ghose V, Kandasamy R, Pandey A Clin Proteomics. 2024; 21(1):14.

PMID: 38389064 PMC: 10885485. DOI: 10.1186/s12014-024-09462-z.


Urine MMP7 as a kidney injury biomarker.

Avello A, Guerrero-Mauvecin J, Sanz A Clin Kidney J. 2024; 17(1):sfad233.

PMID: 38186894 PMC: 10768779. DOI: 10.1093/ckj/sfad233.


Progress in kidney transplantation: The role for systems immunology.

Johnson A, Silva J, Kim S, Larsen C Front Med (Lausanne). 2023; 9:1070385.

PMID: 36590970 PMC: 9800623. DOI: 10.3389/fmed.2022.1070385.


Renal Fibrosis in Lupus Nephritis.

Sciascia S, Cozzi M, Barinotti A, Radin M, Cecchi I, Fenoglio R Int J Mol Sci. 2022; 23(22).

PMID: 36430794 PMC: 9699516. DOI: 10.3390/ijms232214317.


References
1.
Jones C, Buch S, Post M, McCulloch L, Liu E, Eddy A . Pathogenesis of interstitial fibrosis in chronic purine aminonucleoside nephrosis. Kidney Int. 1991; 40(6):1020-31. DOI: 10.1038/ki.1991.310. View

2.
Marsden P . Predicting outcomes after renal transplantation--new tools and old tools. N Engl J Med. 2003; 349(2):182-4. DOI: 10.1056/NEJMe030096. View

3.
Eddy A, Giachelli C . Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney Int. 1995; 47(6):1546-57. DOI: 10.1038/ki.1995.218. View

4.
Efron B, Tibshirani R . Empirical bayes methods and false discovery rates for microarrays. Genet Epidemiol. 2002; 23(1):70-86. DOI: 10.1002/gepi.1124. View

5.
Kottgen A, Glazer N, Dehghan A, Hwang S, Katz R, Li M . Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet. 2009; 41(6):712-7. PMC: 3039280. DOI: 10.1038/ng.377. View