» Articles » PMID: 20145699

Silicon Electronics on Silk As a Path to Bioresorbable, Implantable Devices

Overview
Journal Appl Phys Lett
Date 2010 Feb 11
PMID 20145699
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

Many existing and envisioned classes of implantable biomedical devices require high performance electronicssensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications.

Citing Articles

Bioresorbable Materials for Wound Management.

Lee H, Ryu H Biomimetics (Basel). 2025; 10(2).

PMID: 39997131 PMC: 11852938. DOI: 10.3390/biomimetics10020108.


Recent Progress and Challenges of Implantable Biodegradable Biosensors.

Alam F, Ahmed M, Jalal A, Siddiquee I, Adury R, Hossain G Micromachines (Basel). 2024; 15(4).

PMID: 38675286 PMC: 11051912. DOI: 10.3390/mi15040475.


Biodegradable Mg-MoC MXene Air Batteries for Transient Energy Storage.

Yamada S ACS Appl Mater Interfaces. 2024; 16(12):14759-14769.

PMID: 38497977 PMC: 10982942. DOI: 10.1021/acsami.3c17692.


Design and Development of Transient Sensing Devices for Healthcare Applications.

Janicijevic Z, Huang T, Bojorquez D, Tonmoy T, Pane S, Makarov D Adv Sci (Weinh). 2024; 11(20):e2307232.

PMID: 38484201 PMC: 11132064. DOI: 10.1002/advs.202307232.


Resorbable conductive materials for optimally interfacing medical devices with the living.

Sacchi M, Sauter-Starace F, Mailley P, Texier I Front Bioeng Biotechnol. 2024; 12:1294238.

PMID: 38449676 PMC: 10916519. DOI: 10.3389/fbioe.2024.1294238.


References
1.
Forrest S . The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature. 2004; 428(6986):911-8. DOI: 10.1038/nature02498. View

2.
Yeager J, Phillips D, Rector D, Bahr D . Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J Neurosci Methods. 2008; 173(2):279-85. PMC: 2564809. DOI: 10.1016/j.jneumeth.2008.06.024. View

3.
Wang Y, Rudym D, Walsh A, Abrahamsen L, Kim H, Kim H . In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials. 2008; 29(24-25):3415-28. PMC: 3206261. DOI: 10.1016/j.biomaterials.2008.05.002. View

4.
Horan R, Antle K, Collette A, Wang Y, Huang J, Moreau J . In vitro degradation of silk fibroin. Biomaterials. 2004; 26(17):3385-93. DOI: 10.1016/j.biomaterials.2004.09.020. View

5.
Vepari C, Kaplan D . Silk as a Biomaterial. Prog Polym Sci. 2009; 32(8-9):991-1007. PMC: 2699289. DOI: 10.1016/j.progpolymsci.2007.05.013. View