» Articles » PMID: 20133999

Geographic Structure of Plasmodium Vivax: Microsatellite Analysis of Parasite Populations from Sri Lanka, Myanmar, and Ethiopia

Abstract

Genetic diversity and population structure of Plasmodium vivax parasites can predict the origin and spread of novel variants within a population enabling population specific malaria control measures. We analyzed the genetic diversity and population structure of 425 P. vivax isolates from Sri Lanka, Myanmar, and Ethiopia using 12 trinucleotide and tetranucleotide microsatellite markers. All three parasite populations were highly polymorphic with 3-44 alleles per locus. Approximately 65% were multiple-clone infections. Mean genetic diversity (H(E)) was 0.7517 in Ethiopia, 0.8450 in Myanmar, and 0.8610 in Sri Lanka. Significant linkage disequilibrium was maintained. Population structure showed two clusters (Asian and African) according to geography and ancestry. Strong clustering of outbreak isolates from Sri Lanka and Ethiopia was observed. Predictive power of ancestry using two-thirds of the isolates as a model identified 78.2% of isolates accurately as being African or Asian. Microsatellite analysis is a useful tool for mapping short-term outbreaks of malaria and for predicting ancestry.

Citing Articles

Genetic Structure of Introduced Malaria Isolates in Greece, 2015-2019.

Spiliopoulou I, Pervanidou D, Tegos N, Tseroni M, Baka A, Vakali A Trop Med Infect Dis. 2024; 9(5).

PMID: 38787035 PMC: 11126073. DOI: 10.3390/tropicalmed9050102.


Genomic approaches for monitoring transmission dynamics of malaria: A case for malaria molecular surveillance in Sub-Saharan Africa.

Mensah B, Akyea-Bobi N, Ghansah A Front Epidemiol. 2024; 2:939291.

PMID: 38455324 PMC: 10911004. DOI: 10.3389/fepid.2022.939291.


Malaria in the 'Omics Era'.

Pegoraro M, Weedall G Genes (Basel). 2021; 12(6).

PMID: 34070769 PMC: 8228830. DOI: 10.3390/genes12060843.


Population genomic evidence of Southeast Asian origin.

Daron J, Boissiere A, Boundenga L, Ngoubangoye B, Houze S, Arnathau C Sci Adv. 2021; 7(18).

PMID: 33910900 PMC: 8081369. DOI: 10.1126/sciadv.abc3713.


Plasmodium ovale wallikeri and P. ovale curtisi Infections and Diagnostic Approaches to Imported Malaria, France, 2013-2018.

Joste V, Bailly J, Hubert V, Pauc C, Gendrot M, Guillochon E Emerg Infect Dis. 2021; 27(2).

PMID: 33496652 PMC: 7853592. DOI: 10.3201/eid2702.202143.


References
1.
Carlton J, Adams J, Silva J, Bidwell S, Lorenzi H, Caler E . Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008; 455(7214):757-63. PMC: 2651158. DOI: 10.1038/nature07327. View

2.
Severini C, Menegon M, Gradoni L, Majori G . Use of the Plasmodium vivax merozoite surface protein 1 gene sequence analysis in the investigation of an introduced malaria case in Italy. Acta Trop. 2002; 84(2):151-7. DOI: 10.1016/s0001-706x(02)00186-9. View

3.
Faulde M, Hoffmann R, Fazilat K, Hoerauf A . Malaria reemergence in northern Afghanistan. Emerg Infect Dis. 2008; 13(9):1402-4. PMC: 2857272. DOI: 10.3201/eid1309.061325. View

4.
Feil E, Li B, Aanensen D, Hanage W, Spratt B . eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol. 2004; 186(5):1518-30. PMC: 344416. DOI: 10.1128/JB.186.5.1518-1530.2004. View

5.
Ferreira M, Karunaweera N, da Silva-Nunes M, da Silva N, Wirth D, Hartl D . Population structure and transmission dynamics of Plasmodium vivax in rural Amazonia. J Infect Dis. 2007; 195(8):1218-26. DOI: 10.1086/512685. View