» Articles » PMID: 20133332

Digital Transcriptome Profiling from Attomole-level RNA Samples

Overview
Journal Genome Res
Specialty Genetics
Date 2010 Feb 6
PMID 20133332
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Accurate profiling of minute quantities of RNA in a global manner can enable key advances in many scientific and clinical disciplines. Here, we present low-quantity RNA sequencing (LQ-RNAseq), a high-throughput sequencing-based technique allowing whole transcriptome surveys from subnanogram RNA quantities in an amplification/ligation-free manner. LQ-RNAseq involves first-strand cDNA synthesis from RNA templates, followed by 3' polyA tailing of the single-stranded cDNA products and direct single molecule sequencing. We applied LQ-RNAseq to profile S. cerevisiae polyA+ transcripts, demonstrate the reproducibility of the approach across different sample preparations and independent instrument runs, and establish the absolute quantitative power of this method through comparisons with other reported transcript profiling techniques and through utilization of RNA spike-in experiments. We demonstrate the practical application of this approach to define the transcriptional landscape of mouse embryonic and induced pluripotent stem cells, observing transcriptional differences, including over 100 genes exhibiting differential expression between these otherwise very similar stem cell populations. This amplification-independent technology, which utilizes small quantities of nucleic acid and provides quantitative measurements of cellular transcripts, enables global gene expression measurements from minute amounts of materials and offers broad utility in both basic research and translational biology for characterization of rare cells.

Citing Articles

Non-coding antisense transcripts: fine regulation of gene expression in cancer.

Santos F, Capela A, Mateus F, Nobrega-Pereira S, de Jesus B Comput Struct Biotechnol J. 2022; 20:5652-5660.

PMID: 36284703 PMC: 9579725. DOI: 10.1016/j.csbj.2022.10.009.


Bone marrow imaging reveals the migration dynamics of neonatal hematopoietic stem cells.

Takihara Y, Higaki T, Yokomizo T, Umemoto T, Ariyoshi K, Hashimoto M Commun Biol. 2022; 5(1):776.

PMID: 35918480 PMC: 9346000. DOI: 10.1038/s42003-022-03733-x.


Toward uncharted territory of cellular heterogeneity: advances and applications of single-cell RNA-seq.

Lieberman B, Kusi M, Hung C, Chou C, He N, Ho Y J Transl Genet Genom. 2021; 5:1-21.

PMID: 34322662 PMC: 8315474. DOI: 10.20517/jtgg.2020.51.


Autophagy is dispensable for the maintenance of hematopoietic stem cells in neonates.

Hashimoto M, Umemoto T, Nakamura-Ishizu A, Matsumura T, Yokomizo T, Sezaki M Blood Adv. 2021; 5(6):1594-1604.

PMID: 33710340 PMC: 7993101. DOI: 10.1182/bloodadvances.2020002410.


Hlf marks the developmental pathway for hematopoietic stem cells but not for erythro-myeloid progenitors.

Yokomizo T, Watanabe N, Umemoto T, Matsuo J, Harai R, Kihara Y J Exp Med. 2019; 216(7):1599-1614.

PMID: 31076455 PMC: 6605751. DOI: 10.1084/jem.20181399.


References
1.
Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R . Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A. 1992; 89(7):3010-4. PMC: 48793. DOI: 10.1073/pnas.89.7.3010. View

2.
Talseth-Palmer B, Bowden N, Hill A, Meldrum C, Scott R . Whole genome amplification and its impact on CGH array profiles. BMC Res Notes. 2008; 1:56. PMC: 2525645. DOI: 10.1186/1756-0500-1-56. View

3.
Faghihi M, Wahlestedt C . Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol. 2009; 10(9):637-43. PMC: 2850559. DOI: 10.1038/nrm2738. View

4.
Spiegelman S, Burny A, Das M, KEYDAR J, Schlom J, Travnicek M . DNA-directed DNA polymerase activity in oncogenic RNA viruses. Nature. 1970; 227(5262):1029-31. DOI: 10.1038/2271029a0. View

5.
Che S, Ginsberg S . Amplification of RNA transcripts using terminal continuation. Lab Invest. 2003; 84(1):131-7. DOI: 10.1038/labinvest.3700005. View