» Articles » PMID: 20121217

[Gd@C(82)(OH)(22)](n) Nanoparticles Induce Dendritic Cell Maturation and Activate Th1 Immune Responses

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2010 Feb 4
PMID 20121217
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Dendritic cells play a pivotal role in host immune defense, such as elimination of foreign pathogen and inhibition of tumorigenesis. In this paper, we report that [Gd@C(82)(OH)(22)](n) could induce phenotypic maturation of dendritic cells by stimulating DC production of cytokines including IL-12p70, upregulating DC co-stimulatory (CD80, CD83, and CD86) and MHC (HLA-A,B,C and HLA-DR) molecules, and switching DCs from a CCL5-responsive to a CCL19-responsive phenotype. We found that [Gd@C(82)(OH)(22)](n) can induce dendritic cells to become functionally mature as illustrated by their capacity to activate allogeneic T cells. Mice immunized with ovalbumin in the presence of [Gd@C(82)(OH)(22)](n) exhibit enhanced ovalbumin-specific Th1-polarized immune response as evidenced by the predominantly increased production of IFNgamma, IL-1beta, and IL-2. The [Gd@C(82)(OH)(22)](n) nanoparticle is a potent activator of dendritic cells and Th1 immune responses. These new findings also provide a rational understanding of the potent anticancer activities of [Gd@C(82)(OH)(22)](n) nanoparticles reported previously.

Citing Articles

Fullerene Derivatives for Tumor Treatment: Mechanisms and Application.

Hou W, Shen L, Zhu Y, Wang X, Du T, Yang F Int J Nanomedicine. 2024; 19:9771-9797.

PMID: 39345909 PMC: 11430870. DOI: 10.2147/IJN.S476601.


Iron Oxide Nanoparticles Inhibit Tumor Progression and Suppress Lung Metastases in Mouse Models of Breast Cancer.

Korangath P, Jin L, Yang C, Healy S, Guo X, Ke S ACS Nano. 2024; 18(15):10509-10526.

PMID: 38564478 PMC: 11025112. DOI: 10.1021/acsnano.3c12064.


Oral Immunotherapy Reshapes Intestinal Immunosuppression via Metabolic Reprogramming to Enhance Systemic Anti-Tumor Immunity.

Cao X, Xu Y, Zhou C, Huo J, Su S, Liu L Adv Sci (Weinh). 2023; 10(35):e2302910.

PMID: 37884486 PMC: 10724426. DOI: 10.1002/advs.202302910.


Insights into the toxicological effects of nanomaterials on atherosclerosis: mechanisms involved and influence factors.

Chen S, Su Y, Zhang M, Zhang Y, Xiu P, Luo W J Nanobiotechnology. 2023; 21(1):140.

PMID: 37118804 PMC: 10148422. DOI: 10.1186/s12951-023-01899-y.


Remodeling the hepatic fibrotic microenvironment with emerging nanotherapeutics: a comprehensive review.

Zhao X, Amevor F, Xue X, Wang C, Cui Z, Dai S J Nanobiotechnology. 2023; 21(1):121.

PMID: 37029392 PMC: 10081370. DOI: 10.1186/s12951-023-01876-5.


References
1.
Dugan L, Lovett E, Quick K, Lotharius J, Lin T, OMalley K . Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord. 2001; 7(3):243-246. DOI: 10.1016/s1353-8020(00)00064-x. View

2.
Dugan L, Gabrielsen J, Yu S, Lin T, Choi D . Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis. 1996; 3(2):129-35. DOI: 10.1006/nbdi.1996.0013. View

3.
Mikawa M, Kato H, Okumura M, Narazaki M, Kanazawa Y, Miwa N . Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjug Chem. 2001; 12(4):510-4. DOI: 10.1021/bc000136m. View

4.
Wharton T, Wilson L . Highly-iodinated fullerene as a contrast agent for X-ray imaging. Bioorg Med Chem. 2002; 10(11):3545-54. DOI: 10.1016/s0968-0896(02)00252-3. View

5.
Sugai T, Mori M, Nakazawa M, Ichino M, Naruto T, Kobayashi N . A CpG-containing oligodeoxynucleotide as an efficient adjuvant counterbalancing the Th1/Th2 immune response in diphtheria-tetanus-pertussis vaccine. Vaccine. 2005; 23(46-47):5450-6. DOI: 10.1016/j.vaccine.2004.09.041. View