» Articles » PMID: 20121209

Time-resolved Single-step Protease Activity Quantification Using Nanoplasmonic Resonator Sensors

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2010 Feb 4
PMID 20121209
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Protease activity measurement has broad application in drug screening, diagnosis and disease staging, and molecular profiling. However, conventional immunopeptidemetric assays (IMPA) exhibit low fluorescence signal-to-noise ratios, preventing reliable measurements at lower concentrations in the clinically important picomolar to nanomolar range. Here, we demonstrated a highly sensitive measurement of protease activity using a nanoplasmonic resonator (NPR). NPRs enhance Raman signals by 6.1 x 10(10) times in a highly reproducible manner, enabling fast detection of proteolytically active prostate-specific antigen (paPSA) activities in real-time, at a sensitivity level of 6 pM (0.2 ng/mL) with a dynamic range of 3 orders of magnitude. Experiments on extracellular fluid (ECF) from the paPSA-positive cells demonstrate specific detection in a complex biofluid background. This method offers a fast, sensitive, accurate, and one-step approach to detect the proteases' activities in very small sample volumes.

Citing Articles

Translation of a Protease Turnover Assay for Clinical Discrimination of Mucinous Pancreatic Cysts.

Suresh V, Byers K, Rajesh U, Caiazza F, Zhu G, Craik C Diagnostics (Basel). 2022; 12(6).

PMID: 35741154 PMC: 9222202. DOI: 10.3390/diagnostics12061343.


Waveguide-based surface-enhanced Raman spectroscopy detection of protease activity using non-natural aromatic amino acids.

Turk N, Raza A, Wuytens P, Demol H, Van Daele M, Detavernier C Biomed Opt Express. 2020; 11(8):4800-4816.

PMID: 32923079 PMC: 7449744. DOI: 10.1364/BOE.398038.


Monitoring Proteolytic Activity in Real Time: A New World of Opportunities for Biosensors.

Oliveira-Silva R, Sousa-Jeronimo M, Botequim D, Silva N, Paulo P, Prazeres D Trends Biochem Sci. 2020; 45(7):604-618.

PMID: 32386890 PMC: 7199732. DOI: 10.1016/j.tibs.2020.03.011.


Nanoparticles Enhanced Self-driven Microfludic Biosensor.

Liu C, Xue N, Cai H, Sun J, Qi Z, Zhao P Micromachines (Basel). 2020; 11(4).

PMID: 32230908 PMC: 7231021. DOI: 10.3390/mi11040350.


Gold nanoparticle-based colorimetric method for the detection of prostate-specific antigen.

Xia N, Deng D, Wang Y, Fang C, Li S Int J Nanomedicine. 2018; 13:2521-2530.

PMID: 29731627 PMC: 5923276. DOI: 10.2147/IJN.S154046.


References
1.
McFarland A, Young M, Dieringer J, Van Duyne R . Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B. 2006; 109(22):11279-85. DOI: 10.1021/jp050508u. View

2.
Nithipatikom K, McCoy M, Hawi S, Nakamoto K, Adar F, Campbell W . Characterization and application of Raman labels for confocal Raman microspectroscopic detection of cellular proteins in single cells. Anal Biochem. 2003; 322(2):198-207. DOI: 10.1016/j.ab.2003.07.020. View

3.
Wu P, Zhu L, Stenman U, Leinonen J . Immunopeptidometric assay for enzymatically active prostate-specific antigen. Clin Chem. 2003; 50(1):125-9. DOI: 10.1373/clinchem.2003.026146. View

4.
Nie , Emory . Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science. 1997; 275(5303):1102-6. DOI: 10.1126/science.275.5303.1102. View

5.
Denmeade S, Lou W, Lovgren J, Malm J, Lilja H, Isaacs J . Specific and efficient peptide substrates for assaying the proteolytic activity of prostate-specific antigen. Cancer Res. 1997; 57(21):4924-30. PMC: 4124613. View