» Articles » PMID: 20097654

Structure of the Rna15 RRM-RNA Complex Reveals the Molecular Basis of GU Specificity in Transcriptional 3'-end Processing Factors

Overview
Specialty Biochemistry
Date 2010 Jan 26
PMID 20097654
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Rna15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. CFIA is required for polyA site selection/cleavage targeting RNA sequences that surround polyadenylation sites in the 3'-UTR of RNA polymerase-II transcripts. RNA recognition by CFIA is mediated by an RNA recognition motif (RRM) contained in the Rna15 subunit of the complex. We show here that Rna15 has a strong and unexpected preference for GU containing RNAs and reveal the molecular basis for a base selectivity mechanism that accommodates G or U but discriminates against C and A bases. This mode of base selectivity is rather different to that observed in other RRM-RNA structures and is structurally conserved in CstF64, the mammalian counterpart of Rna15. Our observations provide evidence for a highly conserved mechanism of base recognition amongst the 3'-end processing complexes that interact with the U-rich or U/G-rich elements at 3'-end cleavage/polyadenylation sites.

Citing Articles

Human CSTF2 RNA Recognition Motif Domain Binds to a U-Rich RNA Sequence through a Multistep Binding Process.

Masoumzadeh E, Latham M Biochemistry. 2024; 63(19):2449-2462.

PMID: 39305233 PMC: 11448763. DOI: 10.1021/acs.biochem.4c00408.


Crystal structure of the RNA-recognition motif of Drosophila melanogaster tRNA (uracil-5-)-methyltransferase homolog A.

Witzenberger M, Janowski R, Niessing D Acta Crystallogr F Struct Biol Commun. 2024; 80(Pt 2):36-42.

PMID: 38270511 PMC: 10836426. DOI: 10.1107/S2053230X24000645.


The Nrd1-Nab3-Sen1 transcription termination complex from a structural perspective.

Chaves-Arquero B, Perez-Canadillas J Biochem Soc Trans. 2023; 51(3):1257-1269.

PMID: 37222282 PMC: 10317158. DOI: 10.1042/BST20221418.


Regulation of the hypertonic stress response by the 3' mRNA cleavage and polyadenylation complex.

Urso S, Sathaseevan A, Derry W, Lamitina T Genetics. 2023; 224(1).

PMID: 36972377 PMC: 10490458. DOI: 10.1093/genetics/iyad051.


Birth of a poly(A) tail: mechanisms and control of mRNA polyadenylation.

Rodriguez-Molina J, Turtola M FEBS Open Bio. 2022; 13(7):1140-1153.

PMID: 36416579 PMC: 10315857. DOI: 10.1002/2211-5463.13528.


References
1.
Krissinel E, Henrick K . Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 12 Pt 1):2256-68. DOI: 10.1107/S0907444904026460. View

2.
Russo P, Li W, Hampsey D, Zaret K, Sherman F . Distinct cis-acting signals enhance 3' endpoint formation of CYC1 mRNA in the yeast Saccharomyces cerevisiae. EMBO J. 1991; 10(3):563-71. PMC: 452686. DOI: 10.1002/j.1460-2075.1991.tb07983.x. View

3.
Bai Y, Auperin T, Chou C, Chang G, Manley J, Tong L . Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors. Mol Cell. 2007; 25(6):863-75. DOI: 10.1016/j.molcel.2007.01.034. View

4.
Zhao J, Hyman L, Moore C . Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev. 1999; 63(2):405-45. PMC: 98971. DOI: 10.1128/MMBR.63.2.405-445.1999. View

5.
Canadillas J, Varani G . Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein. EMBO J. 2003; 22(11):2821-30. PMC: 156756. DOI: 10.1093/emboj/cdg259. View