» Articles » PMID: 20080741

Actin Polymerization Driven Mitochondrial Transport in Mating S. Cerevisiae

Overview
Specialty Science
Date 2010 Jan 19
PMID 20080741
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The dynamic microenvironment of cells depends on macromolecular architecture, equilibrium fluctuations, and nonequilibrium forces generated by cytoskeletal proteins. We studied the influence of these factors on the motions of mitochondria in mating S. cerevisiae using Fourier imaging correlation spectroscopy (FICS). Our measurements provide detailed length-scale dependent information about the dynamic behavior of mitochondria. We investigate the influence of the actin cytoskeleton on mitochondrial motion and make comparisons between conditions in which actin network assembly and disassembly is varied either by using disruptive pharmacological agents or mutations that alter the rates of actin polymerization. Under physiological conditions, nonequilibrium dynamics of the actin cytoskeleton leads to 1.5-fold enhancement of the long-time mitochondrial diffusion coefficient and a transient subdiffusive temporal scaling of the mean-square displacement (MSD proportional, variant tau (alpha), with alpha = 2/3). We find that nonequilibrium forces associated with actin polymerization are a predominant factor in driving mitochondrial transport. Moreover, our results lend support to an existing model in which these forces are directly coupled to mitochondrial membrane surfaces.

Citing Articles

The Mechanoreception in Oocyte under Modeling Micro- and Hypergravity.

Ogneva I Cells. 2023; 12(14).

PMID: 37508484 PMC: 10377865. DOI: 10.3390/cells12141819.


Hubbing the Cancer Cell.

Zhou J, Corvaisier M, Malycheva D, Alvarado-Kristensson M Cancers (Basel). 2022; 14(23).

PMID: 36497405 PMC: 9738523. DOI: 10.3390/cancers14235924.


State of Ovaries after a Full Cycle of Gametogenesis under Microgravity Modeling: Cellular Respiration and the Content of Cytoskeletal Proteins.

Usik M, Golubkova M, Ogneva I Int J Mol Sci. 2021; 22(17).

PMID: 34502148 PMC: 8431292. DOI: 10.3390/ijms22179234.


Mitochondrial dynamics, positioning and function mediated by cytoskeletal interactions.

Shah M, Chacko L, Joseph J, Ananthanarayanan V Cell Mol Life Sci. 2021; 78(8):3969-3986.

PMID: 33576841 PMC: 11071877. DOI: 10.1007/s00018-021-03762-5.


Ubl4A is critical for mitochondrial fusion process under nutrient deprivation stress.

Zhang H, Zhao Y, Yao Q, Ye Z, Manas A, Xiang J PLoS One. 2020; 15(11):e0242700.

PMID: 33211772 PMC: 7676689. DOI: 10.1371/journal.pone.0242700.


References
1.
Elowitz M, Surette M, Wolf P, Stock J, Leibler S . Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol. 1998; 181(1):197-203. PMC: 103549. DOI: 10.1128/JB.181.1.197-203.1999. View

2.
Knowles M, Guenza M, Capaldi R, Marcus A . Cytoskeletal-assisted dynamics of the mitochondrial reticulum in living cells. Proc Natl Acad Sci U S A. 2002; 99(23):14772-7. PMC: 137494. DOI: 10.1073/pnas.232346999. View

3.
Cluzel P, Surette M, Leibler S . An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science. 2000; 287(5458):1652-5. DOI: 10.1126/science.287.5458.1652. View

4.
Boldogh I, Fehrenbacher K, Yang H, Pon L . Mitochondrial movement and inheritance in budding yeast. Gene. 2005; 354:28-36. DOI: 10.1016/j.gene.2005.03.049. View

5.
MacKintosh F, Levine A . Nonequilibrium mechanics and dynamics of motor-activated gels. Phys Rev Lett. 2008; 100(1):018104. DOI: 10.1103/PhysRevLett.100.018104. View