» Articles » PMID: 2007860

Hemoglobin Degradation in the Human Malaria Pathogen Plasmodium Falciparum: a Catabolic Pathway Initiated by a Specific Aspartic Protease

Overview
Journal J Exp Med
Date 1991 Apr 1
PMID 2007860
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Hemoglobin is an important nutrient source for intraerythrocytic malaria organisms. Its catabolism occurs in an acidic digestive vacuole. Our previous studies suggested that an aspartic protease plays a key role in the degradative process. We have now isolated this enzyme and defined its role in the hemoglobinolytic pathway. Laser desorption mass spectrometry was used to analyze the proteolytic action of the purified protease. The enzyme has a remarkably stringent specificity towards native hemoglobin, making a single cleavage between alpha 33Phe and 34Leu. This scission is in the hemoglobin hinge region, unraveling the molecule and exposing other sites for proteolysis. The protease is inhibited by pepstatin and has NH2-terminal homology to mammalian aspartic proteases. Isolated digestive vacuoles make a pepstatin-inhibitable cleavage identical to that of the purified enzyme. The pivotal role of this aspartic hemoglobinase in initiating hemoglobin degradation in the malaria parasite digestive vacuoles is demonstrated.

Citing Articles

The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome.

Wiser M Pathogens. 2024; 13(3).

PMID: 38535526 PMC: 10974218. DOI: 10.3390/pathogens13030182.


PTEX helps efficiently traffic haemoglobinases to the food vacuole in Plasmodium falciparum.

Jonsdottir T, Elsworth B, Cobbold S, Gabriela M, Ploeger E, Schneider M PLoS Pathog. 2023; 19(7):e1011006.

PMID: 37523385 PMC: 10414648. DOI: 10.1371/journal.ppat.1011006.


The ability of Interleukin-10 to negate haemozoin-related pro-inflammatory effects has the potential to restore impaired macrophage function associated with malaria infection.

Tembo D, Harawa V, Tran T, Afran L, Molyneux M, Taylor T Malar J. 2023; 22(1):125.

PMID: 37060041 PMC: 10103463. DOI: 10.1186/s12936-023-04539-w.


Targeting the proteome and organelles for potential antimalarial drug candidates.

Abugri J, Ayariga J, Sunwiale S, Wezena C, Gyamfi J, Adu-Frimpong M Heliyon. 2022; 8(8):e10390.

PMID: 36033316 PMC: 9398786. DOI: 10.1016/j.heliyon.2022.e10390.


The natural function of the malaria parasite's chloroquine resistance transporter.

Shafik S, Cobbold S, Barkat K, Richards S, Lancaster N, Llinas M Nat Commun. 2020; 11(1):3922.

PMID: 32764664 PMC: 7413254. DOI: 10.1038/s41467-020-17781-6.


References
1.
Wray W, Boulikas T, Wray V, Hancock R . Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981; 118(1):197-203. DOI: 10.1016/0003-2697(81)90179-2. View

2.
Hempelmann E, Wilson R . Endopeptidases from Plasmodium knowlesi. Parasitology. 1980; 80(2):323-30. DOI: 10.1017/s0031182000000780. View

3.
Fitch C, Chevli R, Banyal H, Phillips G, Pfaller M, Krogstad D . Lysis of Plasmodium falciparum by ferriprotoporphyrin IX and a chloroquine-ferriprotoporphyrin IX complex. Antimicrob Agents Chemother. 1982; 21(5):819-22. PMC: 182018. DOI: 10.1128/AAC.21.5.819. View

4.
Vander Jagt D, Intress C, Heidrich J, Mrema J, Rieckmann K, HEIDRICH H . Marker enzymes of Plasmodium falciparum and human erythrocytes as indicators of parasite purity. J Parasitol. 1982; 68(6):1068-71. View

5.
Aissi E, Charet P, Bouquelet S, Biguet J . Endoprotease in Plasmodium yoelii nigeriensis. Comp Biochem Physiol B. 1983; 74(3):559-66. DOI: 10.1016/0305-0491(83)90229-8. View