» Articles » PMID: 20075073

Biosynthesis of (bacterio)chlorophylls: ATP-dependent Transient Subunit Interaction and Electron Transfer of Dark Operative Protochlorophyllide Oxidoreductase

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2010 Jan 16
PMID 20075073
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Dark operative protochlorophyllide oxidoreductase (DPOR) catalyzes the light-independent two-electron reduction of protochlorophyllide a to form chlorophyllide a, the last common precursor of chlorophyll a and bacteriochlorophyll a biosynthesis. During ATP-dependent DPOR catalysis the homodimeric ChlL(2) subunit carrying a [4Fe-4S] cluster transfers electrons to the corresponding heterotetrameric catalytic subunit (ChlN/ChlB)(2), which also possesses a redox active [4Fe-4S] cluster. To investigate the transient interaction of both subcomplexes and the resulting electron transfer reactions, the ternary DPOR enzyme holocomplex comprising subunits ChlN, ChlB, and ChlL from the cyanobacterium Prochlorococcus marinus was trapped as an octameric (ChlN/ChlB)(2)(ChlL(2))(2) complex after incubation with the nonhydrolyzable ATP analogs adenosine 5'-(gamma-thio)triphosphate, adenosine 5'-(beta,gamma-imido)triphosphate, or MgADP in combination with AlF(4)(-). Additionally, a mutant ChlL(2) protein, with a deleted Leu(153) in the switch II region also allowed for the formation of a stable octameric complex. Furthermore, efficient complex formation required the presence of protochlorophyllide. Electron paramagnetic resonance spectroscopy of ternary DPOR complexes revealed a reduced [4Fe-4S] cluster located on ChlL(2), indicating that complete ATP hydrolysis is a prerequisite for intersubunit electron transfer. Circular dichroism spectroscopic experiments indicated nucleotide-dependent conformational changes for ChlL(2) after ATP binding. A nucleotide-dependent switch mechanism triggering ternary complex formation and electron transfer was concluded. From these results a detailed redox cycle for DPOR catalysis was deduced.

Citing Articles

An Alternative Proposal for the Reaction Mechanism of Light-Dependent Protochlorophyllide Oxidoreductase.

Silva P, Cheng Q ACS Catal. 2022; 12(4):2589-2605.

PMID: 36568346 PMC: 9778109. DOI: 10.1021/acscatal.1c05351.


Complex Evolution of Light-Dependent Protochlorophyllide Oxidoreductases in Aerobic Anoxygenic Phototrophs: Origin, Phylogeny, and Function.

Chernomor O, Peters L, Schneidewind J, Loeschcke A, Knieps-Grunhagen E, Schmitz F Mol Biol Evol. 2020; 38(3):819-837.

PMID: 32931580 PMC: 7947762. DOI: 10.1093/molbev/msaa234.


Substrate recognition induces sequential electron transfer across subunits in the nitrogenase-like DPOR complex.

Corless E, Bennett B, Antony E J Biol Chem. 2020; 295(39):13630-13639.

PMID: 32737200 PMC: 7521650. DOI: 10.1074/jbc.RA120.015151.


Chimeric Interaction of Nitrogenase-Like Reductases with the MoFe Protein of Nitrogenase.

Jasper J, Ramos J, Trncik C, Jahn D, Einsle O, Layer G Chembiochem. 2020; 21(12):1733-1741.

PMID: 31958206 PMC: 7317204. DOI: 10.1002/cbic.201900759.


Anoxygenic Phototrophs Span Geochemical Gradients and Diverse Morphologies in Terrestrial Geothermal Springs.

Hamilton T, Bennett A, Murugapiran S, Havig J mSystems. 2019; 4(6).

PMID: 31690593 PMC: 6832021. DOI: 10.1128/mSystems.00498-19.


References
1.
Watzlich D, Brocker M, Uliczka F, Ribbe M, Virus S, Jahn D . Chimeric nitrogenase-like enzymes of (bacterio)chlorophyll biosynthesis. J Biol Chem. 2009; 284(23):15530-40. PMC: 2708849. DOI: 10.1074/jbc.M901331200. View

2.
Howard J, Rees D . How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation. Proc Natl Acad Sci U S A. 2006; 103(46):17088-93. PMC: 1859894. DOI: 10.1073/pnas.0603978103. View

3.
Belyaeva O, Griffiths W, Kovalev J, Timofeev K, Litvin F . Participation of free radicals in photoreduction of protochlorophyllide to chlorophyllide in an artificial pigment-protein complex. Biochemistry (Mosc). 2001; 66(2):173-7. DOI: 10.1023/a:1002891531118. View

4.
Nomata J, Ogawa T, Kitashima M, Inoue K, Fujita Y . NB-protein (BchN-BchB) of dark-operative protochlorophyllide reductase is the catalytic component containing oxygen-tolerant Fe-S clusters. FEBS Lett. 2008; 582(9):1346-50. DOI: 10.1016/j.febslet.2008.03.018. View

5.
Rees D, Howard J . Nitrogenase: standing at the crossroads. Curr Opin Chem Biol. 2000; 4(5):559-66. DOI: 10.1016/s1367-5931(00)00132-0. View