» Articles » PMID: 20053357

The Dimeric Structure and the Bivalent Recognition of H3K4me3 by the Tumor Suppressor ING4 Suggests a Mechanism for Enhanced Targeting of the HBO1 Complex to Chromatin

Overview
Journal J Mol Biol
Publisher Elsevier
Date 2010 Jan 8
PMID 20053357
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The INhibitor of Growth (ING) family of tumor suppressors regulates the transcriptional state of chromatin by recruiting remodeling complexes to sites with histone H3 trimethylated at position K4 (H3K4me3). This modification is recognized by the plant homeodomain (PHD) present at the C-terminus in the five members of the ING family. ING4 facilitates histone H3 acetylation by the HBO1 complex. Here, we show that ING4 forms homodimers through its N-terminal domain, which folds independently into an elongated coiled-coil structure. The central region of ING4, which contains the nuclear localization sequence, is disordered and flexible and does not directly interact with p53, or does it with very low affinity, in contrast to previous findings. The NMR analysis of the full-length protein reveals that the two PHD fingers of the dimer are chemically equivalent and independent of the rest of the molecule. The detailed NMR analysis of the full-length dimeric protein binding to histone H3K4me3 shows essentially the same binding site and affinity as the isolated PHD finger. Therefore, the ING4 dimer has two identical and independent binding sites for H3K4me3 tails, which, in the context of the chromatin, could belong to the same or to different nucleosomes. These results show that ING4 is a bivalent reader of the chromatin H3K4me3 modification and suggest a mechanism for enhanced targeting of the HBO1 complex to specific chromatin sites. This mechanism could be common to other ING-containing remodeling complexes.

Citing Articles

MtING2 encodes an ING domain PHD finger protein which affects Medicago growth, flowering, global patterns of H3K4me3, and gene expression.

Jaudal M, Mayo-Smith M, Poulet A, Whibley A, Peng Y, Zhang L Plant J. 2022; 112(4):1029-1050.

PMID: 36178149 PMC: 9828230. DOI: 10.1111/tpj.15994.


Aberrant CREB1 activation in prostate cancer disrupts normal prostate luminal cell differentiation.

Watson M, Berger P, Banerjee K, Frank S, Tang L, Ganguly S Oncogene. 2021; 40(18):3260-3272.

PMID: 33846571 PMC: 10760404. DOI: 10.1038/s41388-021-01772-y.


Macromolecular Crowding Increases the Affinity of the PHD of ING4 for the Histone H3K4me3 Mark.

Palacios A, Blanco F Biomolecules. 2020; 10(2).

PMID: 32033221 PMC: 7072245. DOI: 10.3390/biom10020234.


Biological Functions of the ING Proteins.

Dantas A, Al Shueili B, Yang Y, Nabbi A, Fink D, Riabowol K Cancers (Basel). 2019; 11(11).

PMID: 31752342 PMC: 6896041. DOI: 10.3390/cancers11111817.


Deciphering structure, function and mechanism of lysine acetyltransferase HBO1 in protein acetylation, transcription regulation, DNA replication and its oncogenic properties in cancer.

Lan R, Wang Q Cell Mol Life Sci. 2019; 77(4):637-649.

PMID: 31535175 PMC: 11104888. DOI: 10.1007/s00018-019-03296-x.