» Articles » PMID: 20047002

Simulating Brain Tumor Heterogeneity with a Multiscale Agent-Based Model: Linking Molecular Signatures, Phenotypes and Expansion Rate

Overview
Date 2010 Jan 5
PMID 20047002
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

We have extended our previously developed 3D multi-scale agent-based brain tumor model to simulate cancer heterogeneity and to analyze its impact across the scales of interest. While our algorithm continues to employ an epidermal growth factor receptor (EGFR) gene-protein interaction network to determine the cells' phenotype, it now adds an implicit treatment of tumor cell adhesion related to the model's biochemical microenvironment. We simulate a simplified tumor progression pathway that leads to the emergence of five distinct glioma cell clones with different EGFR density and cell 'search precisions'. The in silico results show that microscopic tumor heterogeneity can impact the tumor system's multicellular growth patterns. Our findings further confirm that EGFR density results in the more aggressive clonal populations switching earlier from proliferation-dominated to a more migratory phenotype. Moreover, analyzing the dynamic molecular profile that triggers the phenotypic switch between proliferation and migration, our in silico oncogenomics data display spatial and temporal diversity in documenting the regional impact of tumorigenesis, and thus support the added value of multi-site and repeated assessments in vitro and in vivo. Potential implications from this in silico work for experimental and computational studies are discussed.

Citing Articles

A Review of the Application of Spatial Transcriptomics in Neuroscience.

Zhang L, Xiong Z, Xiao M Interdiscip Sci. 2024; 16(2):243-260.

PMID: 38374297 DOI: 10.1007/s12539-024-00603-4.


Data-driven spatio-temporal modelling of glioblastoma.

Solvsten Jorgensen A, Hill C, Sturrock M, Tang W, Karamched S, Gorup D R Soc Open Sci. 2023; 10(3):221444.

PMID: 36968241 PMC: 10031411. DOI: 10.1098/rsos.221444.


Multiscale modeling of collective cell migration elucidates the mechanism underlying tumor-stromal interactions in different spatiotemporal scales.

Heidary Z, Javanmard S, Izadi I, Zare N, Ghaisari J Sci Rep. 2022; 12(1):16242.

PMID: 36171274 PMC: 9519582. DOI: 10.1038/s41598-022-20634-5.


Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology.

Wu C, Lorenzo G, Hormuth 2nd D, Lima E, Slavkova K, DiCarlo J Biophys Rev (Melville). 2022; 3(2):021304.

PMID: 35602761 PMC: 9119003. DOI: 10.1063/5.0086789.


MUC21 induces the viability and migration of glioblastoma via the STAT3/AKT pathway.

Wang L, Zhang X, Liu J, Liu Q Exp Ther Med. 2022; 23(5):331.

PMID: 35401801 PMC: 8987941. DOI: 10.3892/etm.2022.11260.


References
1.
Sander L, Deisboeck T . Growth patterns of microscopic brain tumors. Phys Rev E Stat Nonlin Soft Matter Phys. 2003; 66(5 Pt 1):051901. DOI: 10.1103/PhysRevE.66.051901. View

2.
Deisboeck T, Berens M, Kansal A, Torquato S, Stemmer-Rachamimov A, Chiocca E . Pattern of self-organization in tumour systems: complex growth dynamics in a novel brain tumour spheroid model. Cell Prolif. 2001; 34(2):115-34. PMC: 6495396. DOI: 10.1046/j.1365-2184.2001.00202.x. View

3.
Mansury Y, Kimura M, Lobo J, Deisboeck T . Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. J Theor Biol. 2002; 219(3):343-70. DOI: 10.1006/jtbi.2002.3131. View

4.
Sole R, Deisboeck T . An error catastrophe in cancer?. J Theor Biol. 2004; 228(1):47-54. DOI: 10.1016/j.jtbi.2003.08.018. View

5.
Maley C, Galipeau P, Finley J, Wongsurawat V, Li X, Sanchez C . Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet. 2006; 38(4):468-73. DOI: 10.1038/ng1768. View