» Articles » PMID: 20016950

Reexamination of Risk Criteria in Dengue Patients Using the Self-organizing Map

Overview
Publisher Springer
Date 2009 Dec 18
PMID 20016950
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Even though the World Health Organization criteria's for classifying the dengue infection have been used for long time, recent studies declare that several difficulties have been faced by the clinicians to apply these criteria. Accordingly, many studies have proposed modified criteria to identify the risk in dengue patients based on statistical analysis techniques. None of these studies utilized the powerfulness of the self-organized map (SOM) in visualizing, understanding, and exploring the complexity in multivariable data. Therefore, this study utilized the clustering of the SOM technique to identify the risk criteria in 195 dengue patients. The new risk criteria were defined as: platelet count less than or equal 40,000 cells per mm(3), hematocrit concentration great than or equal 25% and aspartate aminotransferase (AST) rose by fivefold the normal upper limit for AST/alanine aminotransfansferase (ALT) rose by fivefold the normal upper limit for ALT. The clusters analysis indicated that any dengue patient fulfills any two of the risk criteria is consider as high risk dengue patient.

Citing Articles

Self-Organizing Maps to Multidimensionally Characterize Physical Profiles in Older Adults.

Parra-Rodriguez L, Reyes-Ramirez E, Jimenez-Andrade J, Carrillo-Calvet H, Garcia-Pena C Int J Environ Res Public Health. 2022; 19(19).

PMID: 36231709 PMC: 9565208. DOI: 10.3390/ijerph191912412.


Patterns of Muscle-Related Risk Factors for Sarcopenia in Older Mexican Women.

Carrillo-Vega M, Perez-Zepeda M, Salinas-Escudero G, Garcia-Pena C, Reyes-Ramirez E, Espinel-Bermudez M Int J Environ Res Public Health. 2022; 19(16).

PMID: 36011874 PMC: 9408641. DOI: 10.3390/ijerph191610239.


Characterization of clinical patterns of dengue patients using an unsupervised machine learning approach.

Hair G, Nobre F, Brasil P BMC Infect Dis. 2019; 19(1):649.

PMID: 31331271 PMC: 6647280. DOI: 10.1186/s12879-019-4282-y.


The application of biomedical engineering techniques to the diagnosis and management of tropical diseases: a review.

Ibrahim F, Thio T, Faisal T, Neuman M Sensors (Basel). 2015; 15(3):6947-95.

PMID: 25806872 PMC: 4435123. DOI: 10.3390/s150306947.


Neural network diagnostic system for dengue patients risk classification.

Faisal T, Taib M, Ibrahim F J Med Syst. 2010; 36(2):661-76.

PMID: 20703665 DOI: 10.1007/s10916-010-9532-x.


References
1.
Davies D, Bouldin D . A cluster separation measure. IEEE Trans Pattern Anal Mach Intell. 2011; 1(2):224-7. View

2.
Kalayanarooj S, Vaughn D, Nimmannitya S, Green S, Suntayakorn S, Kunentrasai N . Early clinical and laboratory indicators of acute dengue illness. J Infect Dis. 1997; 176(2):313-21. DOI: 10.1086/514047. View

3.
Shivbalan S, Anandnathan K, Balasubramanian S, Datta M, Amalraj E . Predictors of spontaneous bleeding in Dengue. Indian J Pediatr. 2004; 71(1):33-6. DOI: 10.1007/BF02725653. View

4.
Ibrahim F, Ismail N, Taib M, Wan Abas W . Modeling of hemoglobin in dengue fever and dengue hemorrhagic fever using bioelectrical impedance. Physiol Meas. 2004; 25(3):607-15. DOI: 10.1088/0967-3334/25/3/002. View

5.
Hales S, de Wet N, Maindonald J, Woodward A . Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet. 2002; 360(9336):830-4. DOI: 10.1016/S0140-6736(02)09964-6. View