» Articles » PMID: 20005706

Novel Substituted (Z)-5-((N-benzyl-1H-indol-3-yl)methylene)imidazolidine-2,4-diones and 5-((N-benzyl-1H-indol-3-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-triones As Potent Radio-sensitizing Agents

Overview
Specialty Biochemistry
Date 2009 Dec 17
PMID 20005706
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

A series of (Z)-5-((N-benzyl-1H-indol-3-yl)methylene)imidazolidine-2,4-dione (9a-9m) and 5-((N-benzyl-1H-indol-3-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-trione (10a-10i) derivatives that incorporate a variety of aromatic substituents in both the indole and N-benzyl moieties have been synthesized. These analogs were evaluated for their radiosensitization activity against the HT-29 cell line. Three analogs, 10a, 10b, and 10c were identified as the most potent radiosensitizing agents.

Citing Articles

Targeting NPM1 in irradiated cells inhibits NPM1 binding to RAD51, RAD51 foci formation and radiosensitizes NSCLC.

Traver G, Sekhar K, Crooks P, Keeney D, Freeman M Cancer Lett. 2020; 500:220-227.

PMID: 33358698 PMC: 7822076. DOI: 10.1016/j.canlet.2020.12.023.


Synthesis, anti-microbial activity, cytotoxicity of some novel substituted (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl)benzofuran-2-yl)(phenyl)methanone analogs.

Shankar B, Jalapathi P, Saikrishna B, Perugu S, Manga V Chem Cent J. 2018; 12(1):1.

PMID: 29318401 PMC: 5760494. DOI: 10.1186/s13065-017-0364-3.


In Vitro and in Vivo Effects of Nitrofurantoin on Experimental Toxoplasmosis.

Yeo S, Jin C, Kim S, Park H Korean J Parasitol. 2016; 54(2):155-61.

PMID: 27180573 PMC: 4870977. DOI: 10.3347/kjp.2016.54.2.155.


Molecules that target nucleophosmin for cancer treatment: an update.

Di Matteo A, Franceschini M, Chiarella S, Rocchio S, Travaglini-Allocatelli C, Federici L Oncotarget. 2016; 7(28):44821-44840.

PMID: 27058426 PMC: 5190137. DOI: 10.18632/oncotarget.8599.


1-Benzyl-2-methyl-3-indolylmethylene barbituric acid derivatives: Anti-cancer agents that target nucleophosmin 1 (NPM1).

Penthala N, Ketkar A, Sekhar K, Freeman M, Eoff R, Balusu R Bioorg Med Chem. 2015; 23(22):7226-33.

PMID: 26602084 PMC: 4747820. DOI: 10.1016/j.bmc.2015.10.019.


References
1.
Dewey W, Westra A, Miller H, Nagasawa H . Heat-induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine. Int J Radiat Biol Relat Stud Phys Chem Med. 1971; 20(6):505-20. DOI: 10.1080/09553007114551421. View

2.
Sekhar K, Sonar V, Muthusamy V, Sasi S, Laszlo A, Sawani J . Novel chemical enhancers of heat shock increase thermal radiosensitization through a mitotic catastrophe pathway. Cancer Res. 2007; 67(2):695-701. DOI: 10.1158/0008-5472.CAN-06-3212. View

3.
Lepock J, Frey H, Rodahl A, Kruuv J . Thermal analysis of CHL V79 cells using differential scanning calorimetry: implications for hyperthermic cell killing and the heat shock response. J Cell Physiol. 1988; 137(1):14-24. DOI: 10.1002/jcp.1041370103. View

4.
Kampinga H, Dikomey E . Hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol. 2001; 77(4):399-408. DOI: 10.1080/09553000010024687. View

5.
Nielsen O, Horsman M, Overgaard J . A future for hyperthermia in cancer treatment?. Eur J Cancer. 2001; 37(13):1587-9. DOI: 10.1016/s0959-8049(01)00193-9. View