» Articles » PMID: 19996297

Antidepressants Increase β-arrestin 2 Ubiquitinylation and Degradation by the Proteasomal Pathway in C6 Rat Glioma Cells

Overview
Specialty Pharmacology
Date 2009 Dec 10
PMID 19996297
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

beta-Arrestins, regulators of G protein-coupled receptor-G protein coupling and receptor desensitization and internalization, function also as scaffolding proteins mediating cellular signaling events. beta-Arrestin1 was previously implicated by us in the pathophysiology of depression and in the mechanism of action of antidepressants (ADs). The ubiquitously expressed beta-arrestins1 and 2 are structurally highly homologous. There has been extensive investigation of these two proteins to determine whether they serve different roles in receptor signaling. In this study, we show that treatment of C(6) rat glioma cells with ADs of various types for 3 days resulted in decreased beta-arrestin2 levels. In contrast, beta-arrestin2 mRNA expression was found to be up-regulated by ADs. To unravel the mechanism for these opposite effects several possible beta-arrestin2 post-transcriptional events and modifications were examined. C(6) rat glioma cells transfected with beta-arrestin1-targeted short hairpin RNA showed similar effects of ADs on beta-arrestin2 levels. AD-induced decreases in beta-arrestin2 protein levels were not due to cytosolic membrane translocation. Immunoprecipitation experiments showed that ADs were able to increase coimmunoprecipitation of ubiquitin with beta-arrestin2. AD-induced increases in beta-arrestin2 ubiquitinylation led to its degradation by the proteasomal pathway, as the proteasome inhibitor N-[(phenylmethoxy)carbonyl]-l-leucyl-N-[(1S)-1-formyl-3-methylbutyl]-l-leucinamide (MG-132) prevented antidepressant-induced decreases in beta-arrestin2 protein levels.

Citing Articles

Antagonism of β-arrestins in IL-4-driven microglia reactivity via the Samd4/mTOR/OXPHOS axis in Parkinson's disease.

Liu J, Liang Y, Meng Q, Chen J, Ma J, Zhu H Sci Adv. 2024; 10(34):eadn4845.

PMID: 39167645 PMC: 11338239. DOI: 10.1126/sciadv.adn4845.


Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish.

Demin K, Lakstygal A, Krotova N, Masharsky A, Tagawa N, Chernysh M Sci Rep. 2020; 10(1):19981.

PMID: 33203921 PMC: 7673038. DOI: 10.1038/s41598-020-75855-3.


Acute ethanol exposure reduces serotonin receptor 1A internalization by increasing ubiquitination and degradation of β-arrestin2.

Luessen D, Sun H, McGinnis M, Hagstrom M, Marrs G, McCool B J Biol Chem. 2019; 294(38):14068-14080.

PMID: 31366729 PMC: 6755807. DOI: 10.1074/jbc.RA118.006583.


Do Progestin-Only Contraceptives Contribute to the Risk of Developing Depression as Implied by Beta-Arrestin 1 Levels in Leukocytes? A Pilot Study.

Smith K, Nayyar S, Rana T, Archibong A, Looney K, Nayyar T Int J Environ Res Public Health. 2018; 15(9).

PMID: 30205587 PMC: 6163405. DOI: 10.3390/ijerph15091966.


Beta-arrestin 2 rather than G protein efficacy determines the anxiolytic-versus antidepressant-like effects of nociceptin/orphanin FQ receptor ligands.

Asth L, Ruzza C, Malfacini D, Medeiros I, Guerrini R, Zaveri N Neuropharmacology. 2016; 105:434-442.

PMID: 26867504 PMC: 5567672. DOI: 10.1016/j.neuropharm.2016.02.003.