» Articles » PMID: 1999385

Genetic and Biochemical Characterization of a Pseudomonas Solanacearum Gene Cluster Required for Extracellular Polysaccharide Production and for Virulence

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1991 Mar 1
PMID 1999385
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Infection of host plants by Pseudomonas solanacerum results in wilting, which is thought to be due largely to the occlusion of xylem vessels by the P. solanacearum extracellular polysaccharide (EPS) that primarily consists of N-acetylgalactosamine (GalNAc). By means of Tn3 mutagenesis, we identified a 6.5-kb gene cluster that contains five complementation units required for EPS production and virulence in this bacterium. There was positive correlation between the amount of EPS produced in culture and (i) in planta growth and (ii) virulence. Based on analysis of beta-glucuronidase-gene fusions, these genes are expressed both in broth cultures and in planta and may be constitutive. Both wild-type and mutant strains contained similar amounts of UDP-GalNAc, the predicted primary substrate for EPS synthesis. Thus, the EPS mutants we obtained should be useful in the analysis of steps in the assembly of the polysaccharide and how this process is related to virulence.

Citing Articles

Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco.

Lowe-Power T, Jacobs J, Ailloud F, Fochs B, Prior P, Allen C mBio. 2016; 7(3).

PMID: 27329752 PMC: 4916378. DOI: 10.1128/mBio.00656-16.


The role of bacterial biofilms and surface components in plant-bacterial associations.

Bogino P, Oliva M, Sorroche F, Giordano W Int J Mol Sci. 2013; 14(8):15838-59.

PMID: 23903045 PMC: 3759889. DOI: 10.3390/ijms140815838.


Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions.

Singh R, Soni S, Kalra A Mycorrhiza. 2012; 23(1):35-44.

PMID: 22648372 DOI: 10.1007/s00572-012-0447-x.


Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato.

Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J, Besse P Theor Appl Genet. 2006; 113(1):110-21.

PMID: 16614830 DOI: 10.1007/s00122-006-0277-3.


A Hydrophobic Mutant of Rhizobium etli Altered in Nodulation Competitiveness and Growth in the Rhizosphere.

Araujo R, Robleto E, Handelsman J Appl Environ Microbiol. 1994; 60(5):1430-6.

PMID: 16349248 PMC: 201499. DOI: 10.1128/aem.60.5.1430-1436.1994.


References
1.
Kelman A, Hruschka J . The role of motility and aerotaxis in the selective increase of avirulent bacteria in still broth cultures of Pseudomonas solanacearum. J Gen Microbiol. 1973; 76(1):177-88. DOI: 10.1099/00221287-76-1-177. View

2.
Harding N, Cleary J, Cabanas D, Rosen I, Kang K . Genetic and physical analyses of a cluster of genes essential for xanthan gum biosynthesis in Xanthomonas campestris. J Bacteriol. 1987; 169(6):2854-61. PMC: 212199. DOI: 10.1128/jb.169.6.2854-2861.1987. View

3.
Drigues P, Trigalet A, Dupin P, Samain D, Asselineau J . Comparative studies of lipopolysaccharide and exopolysaccharide from a virulent strain of Pseudomonas solanacearum and from three avirulent mutants. J Bacteriol. 1985; 162(2):504-9. PMC: 218876. DOI: 10.1128/jb.162.2.504-509.1985. View

4.
Dolph P, Majerczak D, Coplin D . Characterization of a gene cluster for exopolysaccharide biosynthesis and virulence in Erwinia stewartii. J Bacteriol. 1988; 170(2):865-71. PMC: 210734. DOI: 10.1128/jb.170.2.865-871.1988. View

5.
Baker C, Neilson M, Sequeira L, Keegstra K . Chemical Characterization of the Lipopolysaccharide of Pseudomonas solanacearum. Appl Environ Microbiol. 1984; 47(5):1096-100. PMC: 240067. DOI: 10.1128/aem.47.5.1096-1100.1984. View