Lee H, Lee S, Choi M, Kwon J, Lee S
Plant Pathol J. 2023; 39(5):417-429.
PMID: 37817490
PMC: 10580051.
DOI: 10.5423/PPJ.OA.06.2023.0090.
Suresh P, Varathraju G, Shanmugaiah V, Almaary K, Elbadawi Y, Mubarak A
Saudi J Biol Sci. 2021; 28(4):2155-2167.
PMID: 33911932
PMC: 8071909.
DOI: 10.1016/j.sjbs.2021.02.073.
Hu M, Li J, Chen R, Li W, Feng L, Shi L
BMC Microbiol. 2018; 18(1):136.
PMID: 30336787
PMC: 6194671.
DOI: 10.1186/s12866-018-1300-y.
Yendyo S, G C R, Pandey B
F1000Res. 2018; 6:2028.
PMID: 29560253
PMC: 5854981.
DOI: 10.12688/f1000research.12448.3.
Li S, Yu Y, Chen J, Guo B, Yang L, Ding W
Molecules. 2016; 21(6).
PMID: 27294898
PMC: 6274444.
DOI: 10.3390/molecules21060754.
Protein O-linked glycosylation in the plant pathogen Ralstonia solanacearum.
Elhenawy W, Scott N, Tondo M, Orellano E, Foster L, Feldman M
Glycobiology. 2015; 26(3):301-11.
PMID: 26531228
PMC: 4736539.
DOI: 10.1093/glycob/cwv098.
The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease.
Ahmad A, Askora A, Kawasaki T, Fujie M, Yamada T
Front Microbiol. 2014; 5:321.
PMID: 25071734
PMC: 4076744.
DOI: 10.3389/fmicb.2014.00321.
Nitrate assimilation contributes to Ralstonia solanacearum root attachment, stem colonization, and virulence.
Dalsing B, Allen C
J Bacteriol. 2013; 196(5):949-60.
PMID: 24363343
PMC: 3957700.
DOI: 10.1128/JB.01378-13.
Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era.
Peeters N, Guidot A, Vailleau F, Valls M
Mol Plant Pathol. 2013; 14(7):651-62.
PMID: 23718203
PMC: 6638647.
DOI: 10.1111/mpp.12038.
Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species.
Um H, Chung E, Lee J, Lee S
J Microbiol. 2011; 49(2):305-8.
PMID: 21538255
DOI: 10.1007/s12275-011-0439-0.
Role of RpoS in virulence of pathogens.
Dong T, Schellhorn H
Infect Immun. 2009; 78(3):887-97.
PMID: 19948835
PMC: 2825926.
DOI: 10.1128/IAI.00882-09.
Xanthan induces plant susceptibility by suppressing callose deposition.
Yun M, Torres P, El Oirdi M, Rigano L, Gonzalez-Lamothe R, Marano M
Plant Physiol. 2006; 141(1):178-87.
PMID: 16531487
PMC: 1459321.
DOI: 10.1104/pp.105.074542.
Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation.
Jackson K, Starkey M, Kremer S, Parsek M, Wozniak D
J Bacteriol. 2004; 186(14):4466-75.
PMID: 15231778
PMC: 438565.
DOI: 10.1128/JB.186.14.4466-4475.2004.
Bacterial Pathogens in Plants: Life up against the Wall.
Alfano J, Collmer A
Plant Cell. 1996; 8(10):1683-1698.
PMID: 12239358
PMC: 161307.
DOI: 10.1105/tpc.8.10.1683.
Genetic evidence that loss of virulence associated with gacS or gacA mutations in Pseudomonas syringae B728a does not result from effects on alginate production.
Willis D, Holmstadt J, Kinscherf T
Appl Environ Microbiol. 2001; 67(3):1400-3.
PMID: 11229941
PMC: 92744.
DOI: 10.1128/AEM.67.3.1400-1403.2001.
Quantitative immunofluorescence of regulated eps gene expression in single cells of Ralstonia solanacearum.
Kang Y, Saile E, Schell M, Denny T
Appl Environ Microbiol. 1999; 65(6):2356-62.
PMID: 10347013
PMC: 91348.
DOI: 10.1128/AEM.65.6.2356-2362.1999.
EpsR modulates production of extracellular polysaccharides in the bacterial wilt pathogen Ralstonia (Pseudomonas) solanacearum.
Chapman M, Kao C
J Bacteriol. 1998; 180(1):27-34.
PMID: 9422588
PMC: 106844.
DOI: 10.1128/JB.180.1.27-34.1998.
Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae.
Kidambi S, Sundin G, Palmer D, Chakrabarty A, Bender C
Appl Environ Microbiol. 1995; 61(6):2172-9.
PMID: 7793938
PMC: 167489.
DOI: 10.1128/aem.61.6.2172-2179.1995.