» Articles » PMID: 19964203

Entity/quality-based Logical Definitions for the Human Skeletal Phenome Using PATO

Overview
Date 2009 Dec 8
PMID 19964203
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

This paper describes an approach to providing computer-interpretable logical definitions for the terms of the Human Phenotype Ontology (HPO) using PATO, the ontology of phenotypic qualities, to link terms of the HPO to the anatomic and other entities that are affected by abnormal phenotypic qualities. This approach will allow improved computerized reasoning as well as a facility to compare phenotypes between different species. The PATO mapping will also provide direct links from phenotypic abnormalities and underlying anatomic structures encoded using the Foundational Model of Anatomy, which will be a valuable resource for computational investigations of the links between anatomical components and concepts representing diseases with abnormal phenotypes and associated genes.

Citing Articles

Data sharing and ontology use among agricultural genetics, genomics, and breeding databases and resources of the Agbiodata Consortium.

Clarke J, Cooper L, Poelchau M, Berardini T, Elser J, Farmer A Database (Oxford). 2023; 2023.

PMID: 37971715 PMC: 10653126. DOI: 10.1093/database/baad076.


A combinatorial approach implementing new database structures to facilitate practical data curation management of QTL, association, correlation and heritability data on trait variants.

Hu Z, Park C, Reecy J Database (Oxford). 2023; 2023.

PMID: 37084387 PMC: 10121204. DOI: 10.1093/database/baad024.


Towards semantic interoperability: finding and repairing hidden contradictions in biomedical ontologies.

Slater L, Gkoutos G, Hoehndorf R BMC Med Inform Decis Mak. 2020; 20(Suppl 10):311.

PMID: 33319712 PMC: 7736131. DOI: 10.1186/s12911-020-01336-2.


Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities.

Fernando P, Mabee P, Zeng E BMC Bioinformatics. 2020; 21(1):442.

PMID: 33028186 PMC: 7542696. DOI: 10.1186/s12859-020-03773-2.


Modifier Ontologies for frequency, certainty, degree, and coverage phenotype modifier.

Endara L, Thessen A, Cole H, Walls R, Gkoutos G, Cao Y Biodivers Data J. 2018; (6):e29232.

PMID: 30532623 PMC: 6281706. DOI: 10.3897/BDJ.6.e29232.


References
1.
Robinson P, Kohler S, Bauer S, Seelow D, Horn D, Mundlos S . The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008; 83(5):610-5. PMC: 2668030. DOI: 10.1016/j.ajhg.2008.09.017. View

2.
Sundberg J, Sundberg B, Schofield P . Integrating mouse anatomy and pathology ontologies into a phenotyping database: tools for data capture and training. Mamm Genome. 2008; 19(6):413-9. PMC: 2844541. DOI: 10.1007/s00335-008-9123-z. View

3.
Bard J, Rhee S, Ashburner M . An ontology for cell types. Genome Biol. 2005; 6(2):R21. PMC: 551541. DOI: 10.1186/gb-2005-6-2-r21. View

4.
Jiang X, Liu B, Jiang J, Zhao H, Fan M, Zhang J . Modularity in the genetic disease-phenotype network. FEBS Lett. 2008; 582(17):2549-54. DOI: 10.1016/j.febslet.2008.06.023. View

5.
Bodenreider O, Hayamizu T, Ringwald M, de Coronado S, Zhang S . Of mice and men: aligning mouse and human anatomies. AMIA Annu Symp Proc. 2006; :61-5. PMC: 1560846. View