» Articles » PMID: 19873573

Quantum Requirement for Photosynthesis in Chlorophyll-deficient Plants with Unusual Lamellar Structures

Overview
Journal J Gen Physiol
Specialty Physiology
Date 2009 Oct 30
PMID 19873573
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Neither an over-all deficiency of chlorophyll, nor an increased enzymatic capacity for maximal rates, nor an unusual lamellar structure was found to change the number of quanta required for the evolution of one molecule of oxygen in healthy aurea mutants of tobacco. The average minimal quantum number remains 10 (efficiency 0.1) as in many algae and typical higher plants. Most of the time the optimal efficiency depends on the availability of some far-red radiation, particularly in the blue region of the spectrum where blue light alone is rather inefficient. These results fit an explanation offered earlier in connection with the hydrogen or acetate photometabolism of algae in far-red light.

Citing Articles

The influence of different light intensities on the growth of the tobacco aurea mutant Su/su.

Schmid G Planta. 2014; 77(1):77-94.

PMID: 24522458 DOI: 10.1007/BF00387561.


Transient light effects in the Hill reaction of disintegrating chloroplasts in vitro.

Harnischfeger G, Gaffron H Planta. 2014; 93(2):89-105.

PMID: 24496706 DOI: 10.1007/BF00387118.


[Comparative studies on the lipid composition of etioplasts and chloroplasts from Pisum and of chloroplasts from an Aurea mutant of Nicotiana].

Heise K, Jacobi G Planta. 2014; 111(2):137-48.

PMID: 24469510 DOI: 10.1007/BF00386274.


Photoacoustic studies on the dependence of state transitions on grana stacking.

Canaani O Photosynth Res. 2014; 25(3):225-32.

PMID: 24420352 DOI: 10.1007/BF00033163.


Comparison of photosynthetic parameters of an aurea mutant (Su/su) of tobacco and the wild-type by the photoacoustic method.

Canaani O, Motzan Z, Malkin S Planta. 2013; 164(4):480-6.

PMID: 24248220 DOI: 10.1007/BF00395963.


References
1.
French C, Young V . The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. J Gen Physiol. 1952; 35(6):873-90. PMC: 2147322. DOI: 10.1085/jgp.35.6.873. View

2.
Emerson R, Chalmers R, Cederstrand C . SOME FACTORS INFLUENCING THE LONG-WAVE LIMIT OF PHOTOSYNTHESIS. Proc Natl Acad Sci U S A. 1957; 43(1):133-43. PMC: 528397. DOI: 10.1073/pnas.43.1.133. View

3.
Bishop N, Gaffron H . Photoreduction at lambda 705 millimicrons in adapted algae. Biochem Biophys Res Commun. 1962; 8:471-6. DOI: 10.1016/0006-291x(62)90299-1. View

4.
Witt H, RUMBERG B, SCHMIDT-MENDE P, Siggel U, Skerra B, Vater J . On the analysis of photosynthesis by flashlight techniques. Angew Chem Int Ed Engl. 1965; 4(10):799-819. DOI: 10.1002/anie.196507991. View

5.
Bishop N . The photometabolism of glucose by an hydrogen-adapted alga. Biochim Biophys Acta. 1961; 51:323-32. DOI: 10.1016/0006-3002(61)90173-1. View